Skip to main content

Advertisement

Log in

Increased sclerostin and bone turnover after diet-induced weight loss in type 2 diabetes: a post hoc analysis of the MADIAB trial

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Sclerostin has been directly related to bone turnover increase in dietary-induced weight loss in non-diabetics. This has not been studied in type 2 diabetes, a condition characterized by increased circulating sclerostin and impaired bone turnover.

Purpose

To study the effect of dietary weight loss and quality of the dietary intervention on changes of sclerostin and bone turnover markers in type 2 diabetes.

Methods

This was a post-hoc analysis of the MADIAB trial, a 21-day randomized controlled trial on overweight/obese type 2 diabetes patients. Patients were randomly assigned 1:1 to the Ma-Pi2 macrobiotic diet or a control diet based on dietary guidelines for type 2 diabetes. Serum sclerostin and circulating markers of bone resorption and formation (P1NP) were measured by enzyme linked immunosorbent assay in 40 subjects (1:1) at baseline and after 21 days treatment.

Results

Both Ma-Pi2 and the control diet groups had significant decreases in body weight (6.0 ± 0.2 vs. 3.2 ± 0.1 %, p < 0.001). Sclerostin increased significantly in the two groups (all p < 0.001) but Ma-Pi2 diet group experienced a greater increase in sclerostin (34.5 vs. 15 %; p = 0.024). Serum circulating markers of bone resorption increased in the two groups (all p < 0.001); circulating markers of bone resorption at the end of the treatment tended to be higher in Ma-Pi2 diet than the control diet group (p = 0.06). P1NP did not change significantly in the two group compared to baseline. Sclerostin changes were related to body mass index reduction (r = −0.37; p = 0.02).

Conclusions

Diet-induced weight loss may induce significant and rapid changes in bone turnover and sclerostin levels. These changes may further impair bone health in subjects with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. International Diabetes Federation, IDF Atlas, 7th ed. Brussels, Belgium: International Diabetes Federation (2015)

  2. A.H. Mokdad, E.S. Ford, B.A. Bowman, W.H. Dietz, F. Vinicor, V.S. Bales, J.S. Marks, Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 289, 76–79 (2003)

    Article  PubMed  Google Scholar 

  3. Obesity management for the treatment of type 2 diabetes. American Diabetes Association. Diabetes Care 39, Suppl 1, S47–S51 (2016)

  4. E.W. Lipkin, A.V. Schwartz, A.M. Anderson, C. Davis, K.C. Johnson, E.W. Gregg, G.A. Bray, R. Berkowitz, A.L. Peters, A. Hodges, C. Lewis, S.E. Kahn, The Look AHEAD Trial: bone loss at 4-year follow-up in type 2 diabetes. Diabetes Care 37, 2822–2829 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Armamento-Villareal, C. Sadler, N. Napoli, K. Shah, S. Chode, D.R. Sinacore, C. Qualls, D.T. Villareal, Weight loss in obese older adults increases serum sclerostin and impairs hip geometry but both are prevented by exercise training. J. Bone Miner. Res. 27, 1215–1221 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. D.T. Villareal, S. Chode, N. Parimi, D.R. Sinacore, T. Hilton, R. Armamento-Villareal, N. Napoli, C. Qualls, K. Shah, Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 364, 1218–1229 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. Shah, R. Armamento-Villareal, N. Parimi, S. Chode, D.R. Sinacore, T.N. Hilton, N. Napoli, C. Qualls, D.T. Villareal, Exercise training in obese older adults prevents increase in bone turnover and attenuates decrease in hip bone mineral density induced by weight loss despite decline in bone-active hormones. J. Bone Miner. Res. 26, 2851–2859 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. Napoli, Questions on therapy with DPP-4 inhibitors and bone homeostasis. Diabetes Metab. Res. Rev. 30, 201–203 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. A.V. Schwartz, K.C. Johnson, S.E. Kahn, J.A. Shepherd, M.C. Nevitt, A.L. Peters, M.P. Walkup, A. Hodges, C.C. Williams, G.A. Bray, Effect of 1 year of an intentional weight loss intervention on bone mineral density in type 2 diabetes: results from the Look AHEAD randomized trial. J. Bone Miner. Res. 27, 619–627 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. Semenov, K. Tamai, X. He, SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280, 26770–26775 (2005)

    Article  CAS  PubMed  Google Scholar 

  11. M.K. Sutherland, J.C. Geoghegan, C. Yu, E. Turcott, J.E. Skonier, D.G. Winkler, J.A. Latham, Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. BONE 35, 828–835 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris, C.H. Turner, Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283, 5866–5875 (2008)

    Article  CAS  PubMed  Google Scholar 

  13. M. Yamamoto, M. Yamauchi, T. Sugimoto, Elevated sclerostin levels are associated with vertebral fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 98, 4030–4037 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. L. Gennari, D. Merlotti, R. Valenti, E. Ceccarelli, M. Ruvio, M.G. Pietrini, C. Capodarca, M.B. Franci, M.S. Campagna, A. Calabro, D. Cataldo, K. Stolakis, F. Dotta, R. Nuti, Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 97, 1737–1744 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. A. Gaudio, F. Privitera, K. Battaglia, V. Torrisi, M.H. Sidoti, I. Pulvirenti, E. Canzonieri, G. Tringali, C.E. Fiore, Sclerostin levels associated with inhibition of the Wnt/beta-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 3744–3750 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. A. Garcia-Martin, P. Rozas-Moreno, R. Reyes-Garcia, S. Morales-Santana, B. Garcia-Fontana, J.A. Garcia-Salcedo, M. Munoz-Torres, Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 97, 234–241 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. N. Napoli, R. Strollo, A. Paladini, S.I. Briganti, P. Pozzilli, S. Epstein, The alliance of mesenchymal stem cells, bone, and diabetes. Int. J. Endocrinol. 2014, 690783 (2014)

    PubMed  PubMed Central  Google Scholar 

  18. A. Soare, Y.M. Khazrai, R. Del Toro, E. Roncella, L. Fontana, S. Fallucca, S. Angeletti, V. Formisano, F. Capata, V. Ruiz, C. Porrata, E. Skrami, R. Gesuita, S. Manfrini, F. Fallucca, M. Pianesi, P. Pozzilli, The effect of the macrobiotic Ma-Pi 2 diet vs. the recommended diet in the management of type 2 diabetes: the randomized controlled MADIAB trial. Nutr. Metab. (Lond). 11, 39 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  19. A. Soare, R. Del Toro, E. Roncella, Y.M. Khazrai, S. Angeletti, L. Dugo, S. Fallucca, L. Fontana, M. Altomare, V. Formisano, F. Capata, R. Gesuita, S. Manfrini, F. Fallucca, M. Pianesi, P. Pozzilli, The effect of macrobiotic Ma-Pi 2 diet on systemic inflammation in patients with type 2 diabetes: a post hoc analysis of the MADIAB trial. BMJ Open Diabetes Res Care 3, e000079 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Napoli, J. Thompson, R. Civitelli, R.C. Armamento-Villareal, Effects of dietary calcium compared with calcium supplements on estrogen metabolism and bone mineral density. Am. J. Clin. Nutr. 85, 1428–1433 (2007)

    CAS  PubMed  Google Scholar 

  21. C. Tudor-Locke, C.L. Craig, W.J. Brown, S.A. Clemes, K. De Cocker, B. Giles-Corti, Y. Hatano, S. Inoue, S.M. Matsudo, N. Mutrie, J.M. Oppert, D.A. Rowe, M.D. Schmidt, G.M. Schofield, J.C. Spence, P.J. Teixeira, M.A. Tully, S.N. Blair, How many steps/day are enough? For adults. Int. J. Behav. Nutr. Phys. Act. 8, 79 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Kosacka, A. Korzeniewska, R. Jankowska, The evaluation of body composition, adiponectin, C-reactive protein and cholesterol levels in patients with obstructive sleep apnea syndrome. Adv. Clin. Exp. Med. 22, 817–824 (2013)

    PubMed  Google Scholar 

  23. X. Lai, C. Price, S. Modla, W.R. Thompson, J. Caplan, C.B. Kirn-Safran, L. Wang, The dependences of osteocyte network on bone compartment, age, and disease. Bone Res. 3, 15009 (2015)

  24. A.R. Wijenayaka, M. Kogawa, H.P. Lim, L.F. Bonewald, D.M. Findlay, G.J. Atkins, Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS ONE 6, e25900 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. G.J. Atkins, P.S. Rowe, H.P. Lim, K.J. Welldon, R. Ormsby, A.R. Wijenayaka, L. Zelenchuk, A. Evdokiou, D.M. Findlay, Sclerostin is a locally acting regulator of late-osteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism. J. Bone. Miner. Res. 26, 1425–1436 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. C. Muschitz, R. Kocijan, C. Marterer, A.R. Nia, G.K. Muschitz, H. Resch, P. Pietschmann, Sclerostin levels and changes in bone metabolism after bariatric surgery. J. Clin. Endocrinol. Metab. 100, 891–901 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. J. Zibellini, R.V. Seimon, C.M. Lee, A.A. Gibson, M. Hsu, S.A. Shapses, T.V. Nguyen, A. Sainsbury, does diet-induced weight loss lead to bone loss in overweight or obese adults? A systematic review and meta-analysis of clinical trials. J. Bone. Miner. Res. 30, 2168–2178 (2015)

    Article  CAS  PubMed  Google Scholar 

  28. R. Civitelli, R. Armamento-Villareal, N. Napoli, Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos. Int. 20, 843–851 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. K. Amrein, S. Amrein, C. Drexler, H.P. Dimai, H. Dobnig, K. Pfeifer, A. Tomaschitz, T.R. Pieber, A. Fahrleitner-Pammer, Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J. Clin. Endocrinol. Metab. 97, 148–154 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. T. Urano, M. Shiraki, Y. Ouchi, S. Inoue, Association of circulating sclerostin levels with fat mass and metabolic disease–related markers in Japanese postmenopausal women. J. Clin. Endocrinol. Metab. 97, E1473–1477 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. R. Thibault, C. Pichard, The evaluation of body composition: a useful tool for clinical practice. Ann. Nutr. Metab. 60, 6–16 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. E. Ishimura, S. Okuno, M. Ichii, K. Norimine, T. Yamakawa, S. Shoji, Y. Nishizawa, M. Inaba, Relationship between serum sclerostin, bone metabolism markers, and bone mineral density in maintenance hemodialysis patients. J. Clin. Endocrinol. Metab. 99, 4315–4320 (2014)

    Article  CAS  PubMed  Google Scholar 

  33. A. Tirosh, R.J. de Souza, F. Sacks, G.A. Bray, S.R. Smith, M.S. LeBoff, Sex differences in the effects of weight loss diets on bone mineral density and body composition: pounds lost trial. J. Clin. Endocrinol. Metab. 100, 2463–2471 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Pedone, N. Napoli, P. Pozzilli, F.F. Rossi, F. Lauretani, S. Bandinelli, L. Ferrucci, R. Antonelli-Incalzi, Dietary pattern and bone density changes in elderly women: a longitudinal study. J. Am. Coll. Nutr. 30, 149–154 (2011)

    Article  PubMed  Google Scholar 

  35. S.A. Polyzos, A.D. Anastasilakis, C. Bratengeier, et al., Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women–the six-month effect of risedronate and teriparatide. Osteoporos. Int. 23, 1171–1176 (2012) doi:10.1007/s00198-010-1525-6

  36. Z. Feldbrin, M. Shargorodsky, Bone remodelling markers in hypertensive patients with and without diabetes mellitus: link between bone and glucose metabolism. Diabetes. Metab. Res. Rev. 31, 752–757 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. F.S. Mirza, I.D. Padhi, L.G. Raisz, J.A. Lorenzo, Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J. Clin. Endocrinol Metab. 95, 1991–1997 (2010). doi:10.1210/jc.2009-2283

  38. M.-S.M. Ardawi, H.A. Al-Kadi, A.A. Rouzi, M.H. Qari, Determinants of serum sclerostin in healthy pre- and postmenopausal women. J. Bone Miner. Res. 26, 2812–2822 (2011). doi:10.1002/jbmr.479

  39. U.I. Mödder, K.A. Hoey, S. Amin, et al., Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J. Bone Miner. Res. 26, 373–379 (2011). doi:10.1002/jbmr.217

Download references

Acknowledgment

The research was sponsored by Un Punto Macrobiotico Association

Authors’ contributions

RS was responsible for the analysis and interpretation of data, writing the manuscript and revising it critically for important intellectual content. AS collected data and contributed to write the manuscript. YMK revised the manuscript critically for important intellectual content. ADM contributed to the writing of the manuscript and revised it critically for important intellectual content. RDT and SF collected data. MGB and LD contributed to the acquisition of data and analysis. MP made substantial contribution to interpretation of data and revising the manuscript critically for important intellectual content. PP collected data, made substantial contribution to interpretation of data and revising the manuscript critically for important intellectual content and, being the guarantor of this work, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. NN designed this post-hoc analysis, made substantial contribution to interpretation of data, contributed to the writing of the manuscript and revised it critically for important intellectual content. All authors read and approved the final manuscript.

Funding

This study was supported by Un Punto Macrobiotico Association, a charity/not-for-profit organization that provided the food required for the trial and supported the cost of CGM analyses. The research sponsors played no role in the design or conduct of the study, collection, management, analysis or interpretation of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Napoli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strollo, R., Soare, A., Manon Khazrai, Y. et al. Increased sclerostin and bone turnover after diet-induced weight loss in type 2 diabetes: a post hoc analysis of the MADIAB trial. Endocrine 56, 667–674 (2017). https://doi.org/10.1007/s12020-016-1171-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1171-7

Keywords

Navigation