Skip to main content

Advertisement

Log in

Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid cancer with a median survival of 4–6 months. Identification of mutations contributing to aberrant activation of signaling cascades in ATC may provide novel opportunities for targeted therapy. Thirty-nine ATC samples were studied by next-generation sequencing (NGS) with an established gene panel. High quality readout was obtained in 30/39 ATC. Twenty-eight ATC harbored a mutation in at least one of the studied genes: TP53 (18/30), NF1 (11/30), ALK (6/30), NRAS (4/30), ATRX (3/30), BRAF (2/30), HRAS (2/30), KRAS (1/30). In 17/30 ATC (54 %) mutations were found in two or more genes. Twenty-one of the identified variants are listed in COSMIC as somatic mutations reported in other cancer entities. In three ATC samples no mutations were detected and none of the ATCs was positive for BRAFV600E. The most frequent mutations were found in TP53 (60 %), followed by NF1 (37 %). ALK mutations were detected in 20 % of ATC and were more frequent than RAS or BRAF mutations. ATRX mutations were identified in 10 % of the ATC samples. These sequencing data from 30 ATC samples demonstrate the accumulation of genetic alterations in ATC because in 90 % of samples mutations were already found in the investigated nine genes alone. Mutations were found with high prevalence in established tumor suppressor and oncogenes in ATC, such as TP53 and H/K/NRAS, but also, although less frequent, in genes that may harbor the potential for targeted treatment in a subset of ATC patients, such as ALK and NF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Reference

  1. J.P. O’Neill, A.R. Shaha, Anaplastic thyroid cancer. Oral Oncol. 49(7), 702–706 (2013). doi:10.1016/j.oraloncology.2013.03.440

    Article  PubMed  Google Scholar 

  2. N. Pinto, M. Black, K. Patel, J. Yoo, J.S. Mymryk, J.W. Barrett, A.C. Nichols, Genomically driven precision medicine to improve outcomes in anaplastic thyroid cancer. J. Oncol. 2014, 936285 (2014). doi:10.1155/2014/936285

    Article  PubMed  PubMed Central  Google Scholar 

  3. R.C. Smallridge, K.B. Ain, S.L. Asa, K.C. Bible, J.D. Brierley, K.D. Burman, E. Kebebew, N.Y. Lee, Y.E. Nikiforov, M.S. Rosenthal, M.H. Shah, A.R. Shaha, R.M. Tuttle, American Thyroid Association Anaplastic Thyroid Cancer Guidelines, T., American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer. Thyroid : Official Journal of the American Thyroid Association 22(11), 1104–1139 (2012). doi:10.1089/thy.2012.0302

    Article  Google Scholar 

  4. M. Xing, Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 13(3), 184–199 (2013). doi:10.1038/nrc3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Gauchotte, C. Philippe, S. Lacomme, B. Leotard, M.P. Wissler, L. Allou, B. Toussaint, M. Klein, J.M. Vignaud, A. Bressenot, BRAF, p53 and SOX2 in anaplastic thyroid carcinoma: evidence for multistep carcinogenesis. Pathology 43(5), 447–452 (2011). doi:10.1097/PAT.0b013e3283486178

    Article  CAS  PubMed  Google Scholar 

  6. V.G. Antico Arciuch, M.A. Russo, M. Dima, K.S. Kang, F. Dasrath, X.H. Liao, S. Refetoff, C. Montagna, A. Di Cristofano, Thyrocyte-specific inactivation of p53 and Pten results in anaplastic thyroid carcinomas faithfully recapitulating human tumors. Oncotarget 2(12), 1109–1126 (2011). doi:10.18632/oncotarget.380

    Article  PubMed  Google Scholar 

  7. D.G. McFadden, A. Vernon, P.M. Santiago, R. Martinez-McFaline, A. Bhutkar, D.M. Crowley, M. McMahon, P.M. Sadow, T. Jacks, p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl. Acad. Sci. USA 111(16), E1600–1609 (2014). doi:10.1073/pnas.1404357111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. J.M. Pita, I.F. Figueiredo, M.M. Moura, V. Leite, B.M. Cavaco, Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas. J. Clin. Endocrinol. Metab. 99(3), E497–507 (2014). doi:10.1210/jc.2013-1512

    Article  CAS  PubMed  Google Scholar 

  9. P. Hou, D. Liu, Y. Shan, S. Hu, K. Studeman, S. Condouris, Y. Wang, A. Trink, A.K. El-Naggar, G. Tallini, V. Vasko, M. Xing, Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin. Cancer Res.: An Official Journal of the American Association for Cancer Research 13(4), 1161–1170 (2007). doi:10.1158/1078-0432.CCR-06-1125

    Article  CAS  Google Scholar 

  10. Z. Liu, P. Hou, M. Ji, H. Guan, K. Studeman, K. Jensen, V. Vasko, A.K. El-Naggar, M. Xing, Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J. Clin. Endocrinol. Metab. 93(8), 3106–3116 (2008). doi:10.1210/jc.2008-0273

    Article  CAS  PubMed  Google Scholar 

  11. G. Garcia-Rostan, A.M. Costa, I. Pereira-Castro, G. Salvatore, R. Hernandez, M.J. Hermsem, A. Herrero, A. Fusco, J. Cameselle-Teijeiro, M. Santoro, Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 65(22), 10199–10207 (2005). doi:10.1158/0008-5472.CAN-04-4259

    Article  CAS  PubMed  Google Scholar 

  12. P. Hou, M. Ji, M. Xing, Association of PTEN gene methylation with genetic alterations in the phosphatidylinositol 3-kinase/AKT signaling pathway in thyroid tumors. Cancer 113(9), 2440–2447 (2008). doi:10.1002/cncr.23869

    Article  CAS  PubMed  Google Scholar 

  13. R. Liu, D. Liu, E. Trink, E. Bojdani, G. Ning, M. Xing, The Akt-specific inhibitor MK2206 selectively inhibits thyroid cancer cells harboring mutations that can activate the PI3K/Akt pathway. J. Clin. Endocrinol. Metab. 96(4), E577–585 (2011). doi:10.1210/jc.2010-2644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.N. Nikiforova, A.I. Wald, S. Roy, M.B. Durso, Y.E. Nikiforov, Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J. Clin. Endocrinol. Metab. 98(11), E1852–1860 (2013). doi:10.1210/jc.2013-2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M.H. Rosove, P.F. Peddi, J.A. Glaspy, BRAF V600E inhibition in anaplastic thyroid cancer. N. Engl. J. Med. 368(7), 684–685 (2013). doi:10.1056/NEJMc1215697

    Article  CAS  PubMed  Google Scholar 

  16. N. Wagle, B.C. Grabiner, E.M. Van Allen, A. Amin-Mansour, A. Taylor-Weiner, M. Rosenberg, N. Gray, J.A. Barletta, Y. Guo, S.J. Swanson, D.T. Ruan, G.J. Hanna, R.I. Haddad, G. Getz, D.J. Kwiatkowski, S.L. Carter, D.M. Sabatini, P.A. Janne, L.A. Garraway, J.H. Lorch, Response and acquired resistance to everolimus in anaplastic thyroid cancer. N. Engl. J. Med. 371(15), 1426–1433 (2014). doi:10.1056/NEJMoa1403352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. X. Shi, R. Liu, S. Qu, G. Zhu, J. Bishop, X. Liu, H. Sun, Z. Shan, E. Wang, Y. Luo, X. Yang, J. Zhao, J. Du, A.K. El-Naggar, W. Teng, M. Xing, Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J. Clin. Endocrinol. Metab. 100(4), E632–637 (2015). doi:10.1210/jc.2014-3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. M. Xing, BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev. 28(7), 742–762 (2007). doi:10.1210/er.2007-0007

    Article  CAS  PubMed  Google Scholar 

  19. J.W. Kunstman, C.C. Juhlin, G. Goh, T.C. Brown, A. Stenman, J.M. Healy, J.C. Rubinstein, M. Choi, N. Kiss, C. Nelson-Williams, S. Mane, D.L. Rimm, M.L. Prasad, A. Hoog, J. Zedenius, C. Larsson, R. Korah, R.P. Lifton, T. Carling, Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum. Mol. Gen. 24(8), 2318–2329 (2015). doi:10.1093/hmg/ddu749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. M. Xing, A.S. Alzahrani, K.A. Carson, D. Viola, R. Elisei, B. Bendlova, L. Yip, C. Mian, F. Vianello, R.M. Tuttle, E. Robenshtok, J.A. Fagin, E. Puxeddu, L. Fugazzola, A. Czarniecka, B. Jarzab, C.J. O’Neill, M.S. Sywak, A.K. Lam, G. Riesco-Eizaguirre, P. Santisteban, H. Nakayama, R.P. Tufano, S.I. Pai, M.A. Zeiger, W.H. Westra, D.P. Clark, R. Clifton-Bligh, D. Sidransky, P.W. Ladenson, V. Sykorova, Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309(14), 1493–1501 (2013). doi:10.1001/jama.2013.3190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Liu, J. Bishop, Y. Shan, S. Pai, D. Liu, A.K. Murugan, H. Sun, A.K. El-Naggar, M. Xing, Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr.-Relat. Cancer 20(4), 603–610 (2013). doi:10.1530/ERC-13-0210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. U.H. Trivedi, T. Cezard, S. Bridgett, A. Montazam, J. Nichols, M. Blaxter, K. Gharbi, Quality control of next-generation sequencing data without a reference. Front. Genet. 5, 111 (2014). doi:10.3389/fgene.2014.00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. M. Uhlen, L. Fagerberg, B.M. Hallstrom, C. Lindskog, P. Oksvold, A. Mardinoglu, A. Sivertsson, C. Kampf, E. Sjostedt, A. Asplund, I. Olsson, K. Edlund, E. Lundberg, S. Navani, C.A. Szigyarto, J. Odeberg, D. Djureinovic, J.O. Takanen, S. Hober, T. Alm, P.H. Edqvist, H. Berling, H. Tegel, J. Mulder, J. Rockberg, P. Nilsson, J.M. Schwenk, M. Hamsten, K. von Feilitzen, M. Forsberg, L. Persson, F. Johansson, M. Zwahlen, G. von Heijne, J. Nielsen, F. Ponten, Proteomics. Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015). doi:10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  24. A.K. Murugan, M. Xing, Anaplastic thyroid cancers harbor novel oncogenic mutations of the ALK gene. Cancer Res. 71(13), 4403–4411 (2011). doi:10.1158/0008-5472.CAN-10-4041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. L.M. Kelly, G. Barila, P. Liu, V.N. Evdokimova, S. Trivedi, F. Panebianco, M. Gandhi, S.E. Carty, S.P. Hodak, J. Luo, S. Dacic, Y.P. Yu, M.N. Nikiforova, R.L. Ferris, D.L. Altschuler, Y.E. Nikiforov, Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc. Natl. Acad. Sci. USA 111(11), 4233–4238 (2014). doi:10.1073/pnas.1321937111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Y. Godbert, B. Henriques de Figueiredo, F. Bonichon, F. Chibon, I. Hostein, G. Perot, C. Dupin, A. Daubech, G. Belleannee, A. Gros, A. Italiano, I. Soubeyran, Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J. Clin. Oncol.: Official Journal of the American Society of Clinical Oncology 33(20), e84–87 (2015). doi:10.1200/JCO.2013.49.6596

    Article  Google Scholar 

  27. I. Landa, T. Ibrahimpasic, L. Boucai, R. Sinha, J.A. Knauf, R.H. Shah, S. Dogan, J.C. Ricarte-Filho, G.P. Krishnamoorthy, B. Xu, N. Schultz, M.F. Berger, C. Sander, B.S. Taylor, R. Ghossein, I. Ganly, J.A. Fagin, Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J. Clin. Invest. 126(3), 1052–1066 (2016). doi:10.1172/JCI85271

    Article  PubMed  PubMed Central  Google Scholar 

  28. K. Konig, M. Peifer, J. Fassunke, M.A. Ihle, H. Kunstlinger, C. Heydt, K. Stamm, F. Ueckeroth, C. Vollbrecht, M. Bos, M. Gardizi, M. Scheffler, L. Nogova, F. Leenders, K. Albus, L. Meder, K. Becker, A. Florin, U. Rommerscheidt-Fuss, J. Altmuller, M. Kloth, P. Nurnberg, T. Henkel, S.E. Bikar, M.L. Sos, W.J. Geese, L. Strauss, Y.D. Ko, U. Gerigk, M. Odenthal, T. Zander, J. Wolf, S. Merkelbach-Bruse, R. Buettner, L.C. Heukamp, Implementation of amplicon parallel sequencing leads to improvement of diagnosis and therapy of lung cancer patients. J. Thorac. Oncol. 10(7), 1049–1057 (2015). doi:10.1097/JTO.0000000000000570

    Article  PubMed  Google Scholar 

  29. W.J. Kent, BLAT--the BLAST-like alignment tool. Genome Res. 12(4), 656–664 (2002). doi:10.1101/gr.229202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. M. Bhagwat, L. Young, R.R. Robison, Using BLAT to find sequence similarity in closely related genomes. Curr. Protoc. Bioinformatics Chapter 10, Unit1018 (2012). doi:10.1002/0471250953.bi1008s37

  31. M. Peifer, L. Fernandez-Cuesta, M.L. Sos, J. George, D. Seidel, L.H. Kasper, D. Plenker, F. Leenders, R. Sun, T. Zander, R. Menon, M. Koker, I. Dahmen, C. Muller, V. Di Cerbo, H.U. Schildhaus, J. Altmuller, I. Baessmann, C. Becker, B. de Wilde, J. Vandesompele, D. Bohm, S. Ansen, F. Gabler, I. Wilkening, S. Heynck, J.M. Heuckmann, X. Lu, S.L. Carter, K. Cibulskis, S. Banerji, G. Getz, K.S. Park, D. Rauh, C. Grutter, M. Fischer, L. Pasqualucci, G. Wright, Z. Wainer, P. Russell, I. Petersen, Y. Chen, E. Stoelben, C. Ludwig, P. Schnabel, H. Hoffmann, T. Muley, M. Brockmann, W. Engel-Riedel, L.A. Muscarella, V.M. Fazio, H. Groen, W. Timens, H. Sietsma, E. Thunnissen, E. Smit, D.A. Heideman, P.J. Snijders, F. Cappuzzo, C. Ligorio, S. Damiani, J. Field, S. Solberg, O.T. Brustugun, M. Lund-Iversen, J. Sanger, J.H. Clement, A. Soltermann, H. Moch, W. Weder, B. Solomon, J.C. Soria, P. Validire, B. Besse, E. Brambilla, C. Brambilla, S. Lantuejoul, P. Lorimier, P.M. Schneider, M. Hallek, W. Pao, M. Meyerson, J. Sage, J. Shendure, R. Schneider, R. Buttner, J. Wolf, P. Nurnberg, S. Perner, L.C. Heukamp, P.K. Brindle, S. Haas, R.K. Thomas, Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nature Genet. 44(10), 1104–1110 (2012). doi:10.1038/ng.2396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J.T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, J.P. Mesirov, Integrative Genomics Viewer. Nature Biotechnol. 29(1), 24–26 (2011). doi:10.1038/nbt.1754

    Article  CAS  Google Scholar 

  33. H. Thorvaldsdottir, J.T. Robinson, J.P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 14(2), 178–192 (2013). doi:10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  34. J.A. Fagin, K. Matsuo, A. Karmakar, D.L. Chen, S.H. Tang, H.P. Koeffler, High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J. Clin. Invest. 91(1), 179–184 (1993). doi:10.1172/JCI116168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Donghi, A. Longoni, S. Pilotti, P. Michieli, G. Della Porta, M.A. Pierotti, Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J. Clin. Invest. 91(4), 1753–1760 (1993). doi:10.1172/JCI116385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Fukushima, S. Suzuki, M. Mashiko, T. Ohtake, Y. Endo, Y. Takebayashi, K. Sekikawa, K. Hagiwara, S. Takenoshita, BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22(41), 6455–6457 (2003). doi:10.1038/sj.onc.1206739

    Article  CAS  PubMed  Google Scholar 

  37. L. Fugazzola, D. Mannavola, V. Cirello, G. Vannucchi, M. Muzza, L. Vicentini, P. Beck-Peccoz, BRAF mutations in an Italian cohort of thyroid cancers. Clin. Endocrinol. 61(2), 239–243 (2004). doi:10.1111/j.1365-2265.2004.02089.x

    Article  CAS  Google Scholar 

  38. E. Puxeddu, S. Moretti, R. Elisei, C. Romei, R. Pascucci, M. Martinelli, C. Marino, N. Avenia, E.D. Rossi, G. Fadda, A. Cavaliere, R. Ribacchi, A. Falorni, A. Pontecorvi, F. Pacini, A. Pinchera, F. Santeusanio, BRAF(V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J. Clin. Endocrinol. Metabol. 89(5), 2414–2420 (2004). doi:10.1210/jc.2003-031425

    Article  CAS  Google Scholar 

  39. M.N. Nikiforova, E.T. Kimura, M. Gandhi, P.W. Biddinger, J.A. Knauf, F. Basolo, Z. Zhu, R. Giannini, G. Salvatore, A. Fusco, M. Santoro, J.A. Fagin, Y.E. Nikiforov, BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J. Clin. Endocrinol. Metabol. 88(11), 5399–5404 (2003). doi:10.1210/jc.2003-030838

    Article  CAS  Google Scholar 

  40. H. Namba, M. Nakashima, T. Hayashi, N. Hayashida, S. Maeda, T.I. Rogounovitch, A. Ohtsuru, V.A. Saenko, T. Kanematsu, S. Yamashita, Clinical implication of hot spot BRAF mutation, V599E, in papillary thyroid cancers. J. Clin. Endocrinol. Metabol. 88(9), 4393–4397 (2003). doi:10.1210/jc.2003-030305

    Article  CAS  Google Scholar 

  41. S. Begum, E. Rosenbaum, R. Henrique, Y. Cohen, D. Sidransky, W.H. Westra, BRAF mutations in anaplastic thyroid carcinoma: implications for tumor origin, diagnosis and treatment. Mod. Pathol, An Official Journal of the United States and Canadian Academy of Pathology, Inc 17(11), 1359–1363 (2004). doi:10.1038/modpathol.3800198

    Article  CAS  Google Scholar 

  42. Cancer Genome Atlas Research, N., Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014). doi:10.1016/j.cell.2014.09.050

    Article  CAS  Google Scholar 

  43. O.O. Seminog, M.J. Goldacre, Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br. J. Cancer 108(1), 193–198 (2013). doi:10.1038/bjc.2012.535

    Article  CAS  PubMed  Google Scholar 

  44. V. Sykorova, S. Dvorakova, J. Vcelak, E. Vaclavikova, T. Halkova, D. Kodetova, P. Lastuvka, J. Betka, P. Vlcek, M. Reboun, R. Katra, B. Bendlova, Search for new genetic biomarkers in poorly differentiated and anaplastic thyroid carcinomas using next generation sequencing. Anticancer Res. 35(4), 2029–2036 (2015)

    CAS  PubMed  Google Scholar 

  45. T. Berry, W. Luther, N. Bhatnagar, Y. Jamin, E. Poon, T. Sanda, D. Pei, B. Sharma, W.R. Vetharoy, A. Hallsworth, Z. Ahmad, K. Barker, L. Moreau, H. Webber, W. Wang, Q. Liu, A. Perez-Atayde, S. Rodig, N.K. Cheung, F. Raynaud, B. Hallberg, S.P. Robinson, N.S. Gray, A.D. Pearson, S.A. Eccles, L. Chesler, R.E. George, The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell 22(1), 117–130 (2012). doi:10.1016/j.ccr.2012.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. R. Chiarle, C. Voena, C. Ambrogio, R. Piva, G. Inghirami, The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat. Rev. Cancer 8(1), 11–23 (2008). doi:10.1038/nrc2291

    Article  CAS  PubMed  Google Scholar 

  47. R.H. Palmer, E. Vernersson, C. Grabbe, B. Hallberg, Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J. 420(3), 345–361 (2009). doi:10.1042/BJ20090387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Slupianek, M. Nieborowska-Skorska, G. Hoser, A. Morrione, M. Majewski, L. Xue, S.W. Morris, M.A. Wasik, T. Skorski, Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res. 61(5), 2194–2199 (2001)

    CAS  PubMed  Google Scholar 

  49. A. Motegi, J. Fujimoto, M. Kotani, H. Sakuraba, T. Yamamoto, ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J. Cell Sci. 117(Pt 15), 3319–3329 (2004). doi:10.1242/jcs.01183

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Deutsche Forschungsgemeinschaft DFG (FU356 3-3 to D.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Christian Moeller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latteyer, S., Tiedje, V., König, K. et al. Targeted next-generation sequencing for TP53, RAS, BRAF, ALK and NF1 mutations in anaplastic thyroid cancer. Endocrine 54, 733–741 (2016). https://doi.org/10.1007/s12020-016-1080-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1080-9

Keywords

Navigation