Skip to main content
Log in

Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Somatostatin analogues and mTOR inhibitors have been used as medical therapy in lung carcinoids with variable results. No data are available on dopamine agonists as treatment for lung carcinoids. The main aim of the current study was to evaluate the effect of the combined treatment of somatostatin analogue octreotide and the dopamine agonist cabergoline with mTOR inhibitors in an in vitro model of typical lung carcinoids: the NCI-H727 cell line. In NCI-H727 cell line, reverse transcriptase-quantitative polymerase chain reaction and immunofluorescence were assessed to characterize the expression of the somatostatin receptor 2 and 5, dopamine receptor 2 and mTOR pathway components. Fifteen typical lung carcinoids tissue samples have been used for somatostatin receptor 2, dopamine receptor 2, and the main mTOR pathway component p70S6K expression and localization by immunohistochemistry. Cell viability, fluorescence-activated cell sorting analysis and western blot have been assessed to test the pharmacological effects of octreotide, cabergoline and mTOR inhibitors, and to evaluate the activation of specific cell signaling pathways in NCI-H727 cell line. NCI-H727 cell line expressed somatostatin receptor 2, somatostatin receptor 5 and dopamine receptor 2 and all mTOR pathway components at messenger and protein levels. Somatostatin receptor 2, dopamine receptor 2, and p70S6K (non phosphorylated and phosphorylated) proteins were expressed in most typical lung carcinoids tissue samples. Octreotide and cabergoline did not reduce cell viability as single agents but, when combined with mTOR inhibitors, they potentiate mTOR inhibitors effect after long-term exposure, reducing Akt and ERK phosphorylation, mTOR escape mechanisms, and increasing the expression DNA-damage-inducible transcript 4, an mTOR suppressor. In conclusion, the single use of octreotide and cabergoline is not sufficient to block cell viability but the combined approach of these agents with mTOR inhibitors might reduce the mTOR inhibitors-induced escape mechanisms and/or activate the endogenous mTOR suppressor, potentiating the effect of the mTOR inhibitors in an in vitro model of typical lung carcinoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.D. Travis. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart—the Concept of Pulmonary Neuroendocrine Tumours. (IARC, Lyon), (2004) 19–20

    Google Scholar 

  2. W.D. Travis, The 2015 WHO classification of lung tumors. Pathologe. 35(Suppl 2), 188 (2014). doi:10.1007/s00292-014-1974-3

    Article  PubMed  Google Scholar 

  3. E.M. Bertino, P.D. Confer, J.E. Colonna, P. Ross, G.A. Otterson, Pulmonary neuroendocrine/carcinoid tumors: a review article. Cancer 115(19), 4434–4441 (2009). doi:10.1002/cncr.24498

    Article  PubMed  Google Scholar 

  4. M.E. Caplin, E. Baudin, P. Ferolla, P. Filosso, M. Garcia-Yuste, E. Lim, K. Oberg, G. Pelosi, A. Perren, R.E. Rossi, W.D. Travis, participants, E.c.c., Pulmonary neuroendocrine (carcinoid) tumors: European neuroendocrine tumor society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. (2015). doi: 10.1093/annonc/mdv041

  5. G.A. Kaltsas, G.M. Besser, A.B. Grossman, The diagnosis and medical management of advanced neuroendocrine tumors. Endocr. Rev. 25(3), 458–511 (2004). doi:10.1210/er.2003-0014

    Article  CAS  PubMed  Google Scholar 

  6. D. Horsch, K.W. Schmid, M. Anlauf, K. Darwiche, T. Denecke, R.P. Baum, C. Spitzweg, C. Grohe, N. Presselt, C. Stremmel, D.F. Heigener, M. Serke, T. Kegel, M. Pavel, C.F. Waller, K.M. Deppermann, R. Arnold, R.M. Huber, M.M. Weber, H. Hoffmann, Neuroendocrine tumors of the bronchopulmonary system (typical and atypical carcinoid tumors): current strategies in diagnosis and treatment. Conclusions of an expert meeting February 2011 in Weimar, Germany. Oncol. Res. Treat. 37(5), 266–276 (2014). doi:10.1159/000362430

    Article  PubMed  Google Scholar 

  7. P.L. Filosso, P. Ferolla, F. Guerrera, E. Ruffini, W.D. Travis, G. Rossi, P.O. Lausi, A. Oliaro; European Society of Thoracic Surgeons Lung Neuroendocrine Tumors Working-Group Steering, C., Multidisciplinary management of advanced lung neuroendocrine tumors. J. Thorac. Dis. 7(Suppl 2), S163–171 (2015). doi:10.3978/j.issn.2072-1439.2015.04.20

    PubMed  PubMed Central  Google Scholar 

  8. S.W. Lamberts, E.P. Krenning, J.C. Reubi, The role of somatostatin and its analogs in the diagnosis and treatment of tumors. Endocr. Rev. 12(4), 450–482 (1991). doi:10.1210/edrv-12-4-450

    Article  CAS  PubMed  Google Scholar 

  9. R. Pivonello, D. Ferone, G. Lombardi, A. Colao, S.W. Lamberts, L.J. Hofland, Novel insights in dopamine receptor physiology. Eur J. Endocrinol. 156(Suppl 1), S13–21 (2007). doi:10.1530/eje.1.02353

    Article  CAS  PubMed  Google Scholar 

  10. R. Baldelli, A. Barnabei, L. Rizza, A.M. Isidori, F. Rota, P. Di Giacinto, A. Paoloni, F. Torino, S.M. Corsello, A. Lenzi, M. Appetecchia, Somatostatin analogs therapy in gastroenteropancreatic neuroendocrine tumors: current aspects and new perspectives. Front. Endocrinol. (Lausanne) 5, 7 (2014). doi:10.3389/fendo.2014.00007

    Google Scholar 

  11. E.T. Janson, K. Oberg, Neuroendocrine tumors—somatostatin receptor expression and somatostatin analog treatment. Cancer. Chemother. Biol. Response. Modif. 21, 535–546 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. D. Kaemmerer, E. Specht, J. Sanger, R.M. Wirtz, M. Sayeg, S. Schulz, A. Lupp, Somatostatin receptors in bronchopulmonary neuroendocrine neoplasms: new diagnostic, prognostic, and therapeutic markers. J. Clin. Endocrinol. Metab. 100(3), 831–840 (2015). doi:10.1210/jc.2014-2699

    Article  CAS  PubMed  Google Scholar 

  13. L. Righi, M. Volante, V. Tavaglione, A. Bille, L. Daniele, T. Angusti, F. Inzani, G. Pelosi, G. Rindi, M. Papotti, Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann. Oncol. 21(3), 548–555 (2010). doi:10.1093/annonc/mdp334

    Article  CAS  PubMed  Google Scholar 

  14. M.C. Zatelli, M. Minoia, C. Martini, F. Tagliati, M.R. Ambrosio, M. Schiavon, M. Buratto, F. Calabrese, E. Gentilin, G. Cavallesco, L. Berdondini, F. Rea, E.C. degli Uberti, Everolimus as a new potential antiproliferative agent in aggressive human bronchial carcinoids. Endocr. Relat. Cancer. 17(3), 719–729 (2010). doi:10.1677/ERC-10-0097

    Article  CAS  PubMed  Google Scholar 

  15. M. Kidd, A.V. Schally, R. Pfragner, M.V. Malfertheiner, I.M. Modlin, Inhibition of proliferation of small intestinal and bronchopulmonary neuroendocrine cell lines by using peptide analogs targeting receptors. Cancer. 112(6), 1404–1414 (2008). doi:10.1002/cncr.23303

    Article  CAS  PubMed  Google Scholar 

  16. E. Diakatou, K.I. Alexandraki, A.V. Tsolakis, G. Kontogeorgos, E. Chatzellis, A. Leonti, G.A. Kaltsas, Somatostatin and dopamine receptor expression in neuroendocrine neoplasms: correlation of immunohistochemical findings with somatostatin receptor scintigraphy visual scores. Clin. Endocrinol. (Oxf) 83(3), 420–428 (2015). doi:10.1111/cen.12775

    Article  CAS  Google Scholar 

  17. G. Kanakis, L. Grimelius, A. Spathis, R. Tringidou, G.Z. Rassidakis, K. Oberg, G. Kaltsas, A.V. Tsolakis, Expression of somatostatin receptors 1-5 and dopamine receptor 2 in lung carcinoids: implications for a therapeutic role. Neuroendocrinology 101(3), 211–222 (2015). doi:10.1159/000381061

    Article  CAS  PubMed  Google Scholar 

  18. E. Diakatou, G. Kaltsas, M. Tzivras, G. Kanakis, E. Papaliodi, G. Kontogeorgos, Somatostatin and dopamine receptor profile of gastroenteropancreatic neuroendocrine tumors: an immunohistochemical study. Endocr. Pathol. 22(1), 24–30 (2011). doi:10.1007/s12022-011-9149-8

    Article  CAS  PubMed  Google Scholar 

  19. K. Tsuta, I.I. Wistuba, C.A. Moran, Differential expression of somatostatin receptors 1-5 in neuroendocrine carcinoma of the lung. Pathol. Res. Pract. 208(8), 470–474 (2012). doi:10.1016/j.prp.2012.05.014

    Article  CAS  PubMed  Google Scholar 

  20. A. Colao, A. Faggiano, R. Pivonello, Somatostatin analogues: treatment of pituitary and neuroendocrine tumors. Prog. Brain. Res. 182, 281–294 (2010). doi:10.1016/S0079-6123(10)82012-6

    Article  CAS  PubMed  Google Scholar 

  21. A. Rinke, H.H. Muller, C. Schade-Brittinger, K.J. Klose, P. Barth, M. Wied, C. Mayer, B. Aminossadati, U.F. Pape, M. Blaker, J. Harder, C. Arnold, T. Gress, R. Arnold, P.S. Group, Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27(28), 4656–4663 (2009). doi:10.1200/JCO.2009.22.8510

    Article  CAS  PubMed  Google Scholar 

  22. M.E. Caplin, M. Pavel, J.B. Cwikla, A.T. Phan, M. Raderer, E. Sedlackova, G. Cadiot, E.M. Wolin, J. Capdevila, L. Wall, G. Rindi, A. Langley, S. Martinez, J. Blumberg, P. Ruszniewski, C. Investigators, Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 371(3), 224–233 (2014). doi:10.1056/NEJMoa1316158

    Article  PubMed  Google Scholar 

  23. K. Oberg, P. Hellman, P. Ferolla, M. Papotti, E.G.W. Group, Neuroendocrine bronchial and thymic tumors: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23(Suppl 7), vii120–123 (2012). doi:10.1093/annonc/mds267

    PubMed  Google Scholar 

  24. K. Lemmer, G. Ahnert-Hilger, M. Hopfner, S. Hoegerle, S. Faiss, P. Grabowski, M. Jockers-Scherubl, E.O. Riecken, M. Zeitz, H. Scherubl, Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life. Sci. 71(6), 667–678 (2002)

    Article  CAS  PubMed  Google Scholar 

  25. M. Kidd, I. Drozdov, R. Joseph, R. Pfragner, M. Culler, I. Modlin, Differential cytotoxicity of novel somatostatin and dopamine chimeric compounds on bronchopulmonary and small intestinal neuroendocrine tumor cell lines. Cancer 113(4), 690–700 (2008). doi:10.1002/cncr.23700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. R. Srirajaskanthan, J. Watkins, L. Marelli, K. Khan, M.E. Caplin, Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology 89(3), 308–314 (2009). doi:10.1159/000179899

    Article  CAS  PubMed  Google Scholar 

  27. E. Grossrubatscher, S. Veronese, P.D. Ciaramella, R. Pugliese, M. Boniardi, L. De Carlis, M. Torre, M. Ravini, M. Gambacorta, P. Loli, High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors. Cancer. Biol. Ther. 7(12), 1970–1978 (2008)

    Article  PubMed  Google Scholar 

  28. R. Pivonello, D. Ferone, W.W. de Herder, A. Faggiano, L. Bodei, R.R. de Krijger, G. Lombardi, A. Colao, S.W. Lamberts, L.J. Hofland, Dopamine receptor expression and function in corticotroph ectopic tumors. J. Clin. Endocrinol. Metab. 92(1), 65–69 (2007). doi:10.1210/jc.2006-0728

    Article  CAS  PubMed  Google Scholar 

  29. R.S. Auriemma, L.F. Grasso, R. Pivonello, A. Colao, The safety of treatments for prolactinomas. Expert. Opin. Drug. Saf. 15(4), 503–512 (2016). doi:10.1517/14740338.2016.1151493

    Article  CAS  PubMed  Google Scholar 

  30. L.F. Grasso, R. Pivonello, A. Colao, Investigational therapies for acromegaly. Expert. Opin. Investig. Drugs. 22(8), 955–963 (2013). doi:10.1517/13543784.2013.805201

    Article  CAS  PubMed  Google Scholar 

  31. F. Mouton, F. Faivre-Defrance, C. Cortet-Rudelli, R. Assaker, G. Soto-Ares, S. Defoort-Dhellemmes, S. Blond, J.L. Wemeau, M.C. Vantyghem, TSH-secreting adenoma improved with cabergoline. Ann. Endocrinol. (Paris) 69(3), 244–248 (2008). doi:10.1016/j.ando.2008.02.001

    Article  CAS  Google Scholar 

  32. R. Pivonello, M. De Leo, A. Cozzolino, A. Colao, The treatment of cushing’s disease. Endocr. Rev. 36(4), 385–486 (2015). doi:10.1210/er.2013-1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. L. Righi, M. Volante, I. Rapa, V. Tavaglione, F. Inzani, G. Pelosi, M. Papotti, Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr. Relat. Cancer. 17(4), 977–987 (2010). doi:10.1677/ERC-10-0157

    Article  CAS  PubMed  Google Scholar 

  34. G.I. Manfredi, A. Dicitore, G. Gaudenzi, M. Caraglia, L. Persani, G. Vitale, PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy. Endocrine 48(2), 363–370 (2015). doi:10.1007/s12020-014-0380-1

    Article  CAS  PubMed  Google Scholar 

  35. J. Chan, M. Kulke, Targeting the mTOR signaling pathway in neuroendocrine tumors. Curr. Treat. Options. Oncol. 15(3), 365–379 (2014). doi:10.1007/s11864-014-0294-4

    Article  PubMed  PubMed Central  Google Scholar 

  36. S. Grozinsky-Glasberg, M. Pavel, Inhibition of mTOR in carcinoid tumors. Target. Oncol. 7(3), 189–195 (2012). doi:10.1007/s11523-012-0225-x

    Article  PubMed  Google Scholar 

  37. F. Meric-Bernstam, A.M. Gonzalez-Angulo, Targeting the mTOR signaling network for cancer therapy. J. Clin. Oncol. 27(13), 2278–2287 (2009). doi:10.1200/JCO.2008.20.0766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M.P. DeYoung, P. Horak, A. Sofer, D. Sgroi, L.W. Ellisen, Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22(2), 239–251 (2008). doi:10.1101/gad.1617608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. J.C. Yao, N. Fazio, S. Singh, R. Buzzoni, C. Carnaghi, E. Wolin, J. Tomasek, M. Raderer, H. Lahner, M. Voi, L.B. Pacaud, N. Rouyrre, C. Sachs, J.W. Valle, G. Delle Fave, E. Van Cutsem, M. Tesselaar, Y. Shimada, D.Y. Oh, J. Strosberg, M.H. Kulke, M.E. Pavel; Rad001 in Advanced Neuroendocrine Tumours, F.T.S.G., Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study. Lancet 387(10022), 968–977 (2016). doi:10.1016/S0140-6736(15)00817-X

    Article  CAS  PubMed  Google Scholar 

  40. B. Svejda, M. Kidd, A. Kazberouk, B. Lawrence, R. Pfragner, I.M. Modlin, Limitations in small intestinal neuroendocrine tumor therapy by mTor kinase inhibition reflect growth factor-mediated PI3K feedback loop activation via ERK1/2 and AKT. Cancer 117(18), 4141–4154 (2011). doi:10.1002/cncr.26011

    Article  CAS  PubMed  Google Scholar 

  41. E. Bajetta, L. Catena, N. Fazio, S. Pusceddu, P. Biondani, G. Blanco, S. Ricci, M. Aieta, F. Pucci, M. Valente, N. Bianco, C.M. Mauri, F. Spada, Everolimus in combination with octreotide long-acting repeatable in a first-line setting for patients with neuroendocrine tumors: an ITMO group study. Cancer 120(16), 2457–2463 (2014). doi:10.1002/cncr.28726

    Article  CAS  PubMed  Google Scholar 

  42. M.E. Pavel, J.D. Hainsworth, E. Baudin, M. Peeters, D. Horsch, R.E. Winkler, J. Klimovsky, D. Lebwohl, V. Jehl, E.M. Wolin, K. Oberg, E. Van Cutsem, J.C. Yao, R.-S. Group, Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet 378(9808), 2005–2012 (2011). doi:10.1016/S0140-6736(11)61742-X

    Article  CAS  PubMed  Google Scholar 

  43. N. Fazio, D. Granberg, A. Grossman, S. Saletan, J. Klimovsky, A. Panneerselvam, E.M. Wolin, Everolimus plus octreotide long-acting repeatable in patients with advanced lung neuroendocrine tumors: analysis of the phase 3, randomized, placebo-controlled RADIANT-2 study. Chest. 143(4), 955–962 (2013). doi:10.1378/chest.12-1108

    Article  CAS  PubMed  Google Scholar 

  44. T. Aoki, F. Motoi, N. Sakata, T. Naitoh, Y. Katayose, S. Egawa, J. Miyazaki, M. Unno, Somatostatin analog inhibits the growth of insulinoma cells by p27-mediated G1 cell cycle arrest. Pancreas 43(5), 720–729 (2014). doi:10.1097/MPA.0000000000000128

    Article  CAS  PubMed  Google Scholar 

  45. S. Grozinsky-Glasberg, G. Franchi, M. Teng, C.A. Leontiou, A. Ribeiro de Oliveira Jr., P. Dalino, N. Salahuddin, M. Korbonits, A.B. Grossman, Octreotide and the mTOR inhibitor RAD001 (everolimus) block proliferation and interact with the Akt-mTOR-p70S6K pathway in a neuro-endocrine tumour cell Line. Neuroendocrinology 87(3), 168–181 (2008). doi:10.1159/000111501

    Article  CAS  PubMed  Google Scholar 

  46. S.C. Li, C. Martijn, T. Cui, A. Essaghir, R.M. Luque, J.B. Demoulin, J.P. Castano, K. Oberg, V. Giandomenico, The somatostatin analogue octreotide inhibits growth of small intestine neuroendocrine tumour cells. PLoS One 7(10), e48411 (2012). doi:10.1371/journal.pone.0048411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Moreno, A. Akcakanat, M.F. Munsell, A. Soni, J.C. Yao, F. Meric-Bernstam, Antitumor activity of rapamycin and octreotide as single agents or in combination in neuroendocrine tumors. Endocr. Relat. Cancer. 15(1), 257–266 (2008). doi:10.1677/ERC-07-0202

    Article  CAS  PubMed  Google Scholar 

  48. C. Pivonello, M. Negri, M.C. De Martino, M. Napolitano, C. de Angelis, D.P. Provvisiero, G. Cuomo, R.S. Auriemma, C. Simeoli, F. Izzo, A. Colao, L.J. Hofland, R. Pivonello, The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget (2016). doi: 10.18632/oncotarget.6836

  49. R. Rasmussen, in Quantification on the LightCycler, ed. by S. Meuer, C. Wittwer, K.-i. Nakagawara , Rapid cycle real time PCR: methods and applications (Springer, Heidelberg, 2001), pp. 21–34

  50. T.D. Schmittgen, K.J. Livak, Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3(6), 1101–1108 (2008)

    Article  CAS  PubMed  Google Scholar 

  51. M.W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR. Nucleic. Acids. Res. 29(9), e45 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M.C. De Martino, R.A. Feelders, W.W. de Herder, P.M. van Koetsveld, F. Dogan, J.A. Janssen, A.M. Waaijers, C. Pivonello, S.W. Lamberts, A. Colao, R.R. de Krijger, R. Pivonello, L.J. Hofland, Characterization of the mTOR pathway in human normal adrenal and adrenocortical tumors. Endocr. Relat. Cancer. 21(4), 601–613 (2014). doi:ERC-13-0112 [pii] 10.1530/ERC-13-0112

    Article  PubMed  Google Scholar 

  53. A. Naalsund, H. Rostad, E.H. Strom, M.B. Lund, T.E. Strand, Carcinoid lung tumors--incidence, treatment and outcomes: a population-based study. Eur. J. Cardiothorac. Surg. 39(4), 565–569 (2011). doi:10.1016/j.ejcts.2010.08.036

    Article  PubMed  Google Scholar 

  54. J.C. Yao, M. Hassan, A. Phan, C. Dagohoy, C. Leary, J.E. Mares, E.K. Abdalla, J.B. Fleming, J.N. Vauthey, A. Rashid, D.B. Evans, One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J. Clin. Oncol. 26(18), 3063–3072 (2008). doi:10.1200/JCO.2007.15.4377

    Article  PubMed  Google Scholar 

  55. E. Bajetta, L. Catena, G. Procopio, S. De Dosso, E. Bichisao, L. Ferrari, A. Martinetti, M. Platania, E. Verzoni, B. Formisano, R. Bajetta, Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer. Chemother. Pharmacol. 59(5), 637–642 (2007). doi:10.1007/s00280-006-0306-6

    Article  CAS  PubMed  Google Scholar 

  56. D. Granberg, B. Eriksson, E. Wilander, P. Grimfjard, M.L. Fjallskog, K. Oberg, B. Skogseid, Experience in treatment of metastatic pulmonary carcinoid tumors. Ann. Oncol. 12(10), 1383–1391 (2001)

    Article  CAS  PubMed  Google Scholar 

  57. L.J. Wirth, M.R. Carter, P.A. Janne, B.E. Johnson, Outcome of patients with pulmonary carcinoid tumors receiving chemotherapy or chemoradiotherapy. Lung. Cancer. 44(2), 213–220 (2004). doi:10.1016/j.lungcan.2003.11.016

    Article  PubMed  Google Scholar 

  58. L. Bodei, M. Cremonesi, M. Kidd, C.M. Grana, S. Severi, I.M. Modlin, G. Paganelli, Peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Thorac. Surg. Clin. 24(3), 333–349 (2014). doi:10.1016/j.thorsurg.2014.04.005

    Article  PubMed  Google Scholar 

  59. R. Srirajaskanthan, C. Toumpanakis, A. Karpathakis, L. Marelli, A.M. Quigley, M. Dusmet, T. Meyer, M.E. Caplin, Surgical management and palliative treatment in bronchial neuroendocrine tumours: a clinical study of 45 patients. Lung. Cancer. 65(1), 68–73 (2009). doi:10.1016/j.lungcan.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  60. P.L. Filosso, E. Ruffini, A. Oliaro, E. Papalia, G. Donati, O. Rena, Long-term survival of atypical bronchial carcinoids with liver metastases, treated with octreotide. Eur. J. Cardiothorac. Surg. 21(5), 913–917 (2002)

    Article  PubMed  Google Scholar 

  61. R. Pivonello, D. Ferone, S.W. Lamberts, A. Colao, Cabergoline plus lanreotide for ectopic Cushing’s syndrome. N. Engl. J. Med. 352(23), 2457–2458 (2005). doi:10.1056/NEJM200506093522322

    Article  CAS  PubMed  Google Scholar 

  62. O.D. Bruno, K. Danilowicz, M. Manavela, D. Mana, M.A. Rossi, Long-term management with octreotide or cabergoline in ectopic corticotropin hypersecretion: case report and literature review. Endocr. Pract. 16(5), 829–834 (2010). doi:10.4158/EP09286.CR

    Article  PubMed  Google Scholar 

  63. T. Gagliano, M. Bellio, E. Gentilin, D. Mole, F. Tagliati, M. Schiavon, N.G. Cavallesco, L.G. Andriolo, M.R. Ambrosio, F. Rea, E. Degli Uberti, M.C. Zatelli, mTOR, p70S6K, AKT, and ERK1/2 levels predict sensitivity to mTOR and PI3K/mTOR inhibitors in human bronchial carcinoids. Endocr. Relat. Cancer. 20(4), 463–475 (2013). doi:10.1530/ERC-13-0042

    Article  CAS  PubMed  Google Scholar 

  64. K.E. O’Reilly, F. Rojo, Q.B. She, D. Solit, G.B. Mills, D. Smith, H. Lane, F. Hofmann, D.J. Hicklin, D.L. Ludwig, J. Baselga, N. Rosen, mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer. Res. 66(3), 1500–1508 (2006). doi:10.1158/0008-5472.CAN-05-2925

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study has not received any specific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Pivonello.

Ethics declarations

Conflict of interest

A.C. has been Principal Investigator of Research studies for Novartis, Ipsen, and Pfizer; received research grants from Novartis, Ipsen, Pfizer, Ferring, Lilly, Novo Nordisk, HRA Pharma, and Italfarmaco; has been an occasional consultant for Novartis, Ipsen, Pfizer, and Italfarmaco; and has received fees and honoraria for presentations from Novartis and Ipsen. R.P. has been Principal Investigator of Research Studies for Novartis; received research grants from Novartis, Pfizer, HRA Pharma, and Viropharma; has been an occasional consultant for Novartis, Ipsen, Pfizer, Viropharma, Ferring, and Italfarmaco; and has received fees and honoraria for presentations from Novartis.

Additional information

Claudia Pivonello and Panagoula Rousaki have contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivonello, C., Rousaki, P., Negri, M. et al. Effects of the single and combined treatment with dopamine agonist, somatostatin analog and mTOR inhibitors in a human lung carcinoid cell line: an in vitro study. Endocrine 56, 603–620 (2017). https://doi.org/10.1007/s12020-016-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-1079-2

Keywords

Navigation