Skip to main content
Log in

Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Immediate postnatal overfeeding in rats, obtained by reducing the litter size, results in early-onset obesity. Such experimental paradigm programs overweight, insulin resistance, dyslipidemia, increased adipose glucocorticoid metabolism [up-regulation of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)], and overexpression of proinflammatory cytokines in mesenteric adipose tissue (MAT) in adulthood. We studied the effects of pioglitazone, a PPARγ agonist, treatment on the above-mentioned overfeeding-induced alterations. Nine-month-old rats normofed or overfed during the immediate postnatal period were given pioglitazone (3 mg/kg/day) for 6 weeks. Pioglitazone stimulated weight gain and induced a redistribution of adipose tissue toward epididymal location with enhanced plasma adiponectin. Treatment normalized postnatal overfeeding-induced metabolic alterations (increased fasting insulinemia and free fatty acids) and mesenteric overexpression of GR, 11β-HSD11, CD 68, and proinflammatory cytokines mRNAs, including plasminogen-activator inhibitor type 1. Mesenteric GR mRNA levels correlated positively with mesenteric proinflammatory cytokines mRNA concentrations. In vitro incubation of MAT obtained from overfed rats demonstrated that pioglitazone induced a down-regulation of GR gene expression and normalized glucocorticoid-induced stimulation of 11β-HSD1 and plasminogen-activator inhibitor type 1 mRNAs. Our data show for the first time that the metabolic, endocrine, and inflammatory alterations induced by early-onset postnatal obesity can be reversed by pioglitazone at the adulthood. They demonstrate that pioglitazone, in addition to its well-established effect on adipose tissue redistribution and adiponectin secretion, reverses programing-induced adipose GR, 11β-HSD1, and proinflammatory cytokines overexpression, possibly through a GR-dependent mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.E. Duque-Guimarães, S.E. Ozanne, Nutritional programming of insulin resistance: causes and consequences. Trends Endocrinol. Metab. 24, 525–535 (2013)

    Article  PubMed  Google Scholar 

  2. D.I.W. Phillips, D.J.P. Barker, C.H.D. Fall, J.R. Seckl, C.B. Whorwood, P.J. Wood, B.R. Walker, Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J. Clin. Endocrinol. Metab. 83, 757–760 (1998)

    CAS  PubMed  Google Scholar 

  3. M. Grino, Prenatal nutritional programming of central obesity and the metabolic syndrome: role of adipose tissue glucocorticoid metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1233–R1235 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. S. Boullu-Ciocca, A. Dutour, V. Guillaume, V. Achard, C. Oliver, M. Grino, Postnatal diet-induced obesity in rats upregulates systemic and adipose tissue glucocorticoid metabolism during development and in adulthood. Its relationship with the metabolic syndrome. Diabetes 54, 197–203 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. S. Boullu-Ciocca, V. Achard, V. Tassistro, A. Dutour, M. Grino, Postnatal programming of glucocorticoid metabolism in rats modulates high-fat diet-induced regulation of visceral adipose tissue glucocorticoid exposure and sensitivity, and adiponectin and pro-inflammatory adipokines gene expression in adulthood. Diabetes 57, 669–677 (2008)

    Article  CAS  PubMed  Google Scholar 

  6. S. Boullu-Ciocca, O. Paulmyer-Lacroix, F. Fina, L. Ouafik, M.C. Alessi, C. Oliver, M. Grino, Expression of the mRNAs coding for the glucocorticoid receptor isoforms in obesity. Obes. Res. 11, 925–929 (2003)

    Article  CAS  PubMed  Google Scholar 

  7. M. Rebuffé-Scrive, K. Lundholm, P. Björntorp, Glucocorticoid hormone binding to human adipose tissue. Eur. J. Clin. Invest. 15, 267–271 (1985)

    Article  PubMed  Google Scholar 

  8. R. Desbriere, V. Vuaroqueaux, V. Achard, S. Boullu-Ciocca, M. Labuhn, A. Dutour, M. Grino, 11β-Hydroxysteroid dehydrogenase type 1 is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity 14, 794–798 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. R.S. Lindsay, D.J. Wake, S. Nair, J. Bunt, D.E. Livingstone, P.A. Permana, P.A. Tataranni, B.R. Walker, Subcutaneous adipose 11β-hydroxysteroid dehydrogenase type 1 activity and messenger ribonucleic acid levels are associated with adiposity and insulinemia in Pima Indians and Caucasians. J. Clin. Endocrinol. Metab. 88, 2738–2744 (2003)

    Article  CAS  PubMed  Google Scholar 

  10. O. Paulmyer-Lacroix, S. Boullu, C. Oliver, M.-C. Alessi, M. Grino, Expression of the mRNA coding for 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue from obese patients: an in situ hybridization study. J. Clin. Endocrinol. Metab. 87, 2701–2705 (2002)

    CAS  PubMed  Google Scholar 

  11. E. Rask, B.R. Walker, S. Södeberg, D.E. Livingstone, M. Eliasson, O. Johnson, R. Andrew, T. Olsson, Tissue-specific changes in peripheral cortisol metabolism in obese women: increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J. Clin. Endocrinol. Metab. 87, 3330–3336 (2002)

    CAS  PubMed  Google Scholar 

  12. E.E. Kershaw, N.M. Morton, H. Dhillon, L. Ramage, J.R. Seckl, J.S. Flier, Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes 54, 1023–1031 (2005)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. H. Masuzaki, J. Paterson, H. Shinyama, N.M. Morton, J.J. Mullins, J.R. Seckl, J.S. Flier, A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. A.M. Sharma, B. Staels, REVIEW: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipids and glucose metabolism. J. Clin. Endocrinol. Metab. 92, 386–395 (2007)

    Article  CAS  PubMed  Google Scholar 

  15. I. Bogacka, H. Xie, G.A. Bray, S.R. Smith, The effects of pioglitazone on peroxisome proliferator-activated receptor-γ target genes related to lipid storage in vivo. Diabetes Care 27, 1660–1667 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. M. Laplante, W.T. Festuccia, G. Soucy, Y. Gélinas, J. Lalonde, J.P. Berger, Y. Deshaies, Mechanisms of the depot specificity of peroxisome proliferator-activated receptor γ action on adipose tissue metabolism. Diabetes 55, 2771–2778 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. C.K. Glass, K. Saijo, Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. S. Lahiri, T. Sen, G. Palit, Involvement of glucocorticoid receptor and peroxisome proliferator activated receptor-γ in pioglitazone mediated chronic gastric ulcer healing in rats. Eur. J. Pharmacol. 609, 118–125 (2009)

    Article  CAS  PubMed  Google Scholar 

  19. L. Escribano, A.-M. Simón, A. Pérez-Mediavilla, P. Salazar-Colocho, J. Del Río, D. Frechilla, Rosiglitazone reverses memory decline and hippocampal glucocorticoid receptor down-regulation in an Alzheimer’s disease mouse model. Biochem. Biophys. Res. Commun. 379, 406–410 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. V.R. Narala, R. Ranga, M.R. Smith, A.A. Berlin, T.J. Standiford, N.W. Lukacs, R.C. Reddy, Pioglitazone is as effective as dexamethasone in a cockroach allergen-induced murine model of asthma. Respir. Res. 8, 90 (2007)

    Article  PubMed Central  PubMed  Google Scholar 

  21. M. Nie, L. Corbett, A.F. Knox, L. Pang, Differential regulation of chemokine expression by peroxisome proliferator-activated receptor γ agonists. Interactions with glucocorticoids and β2-agonists. J. Biol. Chem. 280, 2550–2561 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. A. Ialenti, G. Grassia, P. Di Meglio, P. Maffia, M. Di Rosa, A. Ianaro, Mechanism of the anti-inflammatory effect of thiazolidinediones: relationship with the glucocorticoid pathway. Mol. Pharmacol. 67, 1620–1628 (2005)

    Article  CAS  PubMed  Google Scholar 

  23. L. Matthews, A. Berry, M. Tersigni, F. D’Acquisto, A. Ianaro, D. Ray, Thiazolidinediones are partial agonists for the glucocorticoid receptor. Endocrinology 150, 75–86 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. G. Chinetti-Gbaguidi, M.A. Bouhlel, C. Copin, C. Duhem, B. Derudas, B. Neve, B. Noel, J. Eeckhoute, P. Lefebvre, J.R. Seckl, B. Staels, Peroxisome proliferator-activated receptor-γ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages. Arterioscler. Thromb. Vasc. Biol. 32, 677–685 (2012)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. V.H. Ryan, P. Trayhurn, L. Hunter, P.J. Morris, A.J. German, 11-Hydroxy-β-steroid dehydrogenase gene expression in canine adipose tissue and adipocytes: stimulation by lipopolysaccharide and tumor necrosis factor α. Domest. Anim. Endocrinol. 41, 150–161 (2011)

    Article  CAS  PubMed  Google Scholar 

  26. G.E. Walker, P. Marzullo, B. Verti, G. Guzzaloni, S. Maestrini, F. Zurleni, A. Liuzzi, A.M. Di Blasio, Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects. Obesity 16, 1983–1991 (2008)

    Article  CAS  PubMed  Google Scholar 

  27. K. Mai, J. Andres, T. Bobbert, C. Maser-Gluth, M. Möhlig, V. Bähr, A.F. Pfeiffer, J. Spranger, S. Diederich, Rosiglitazone decreases 11β-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue. Clin. Endocrinol. 67, 419–425 (2007)

    Article  CAS  Google Scholar 

  28. J. Berger, M. Tanen, A. Elbrecht, A. Hermanowski-Vosatka, D.E. Moller, S.D. Wright, R. Thieringer, Peroxisome proliferator-activated receptor-γ ligands inhibit adipocyte 11β-hydroxysteroid dehydrogenase type 1 expression and activity. J. Biol. Chem. 276, 12629–12635 (2001)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Iwasaki, S. Takayasu, M. Nishiyama, M. Tsugita, T. Taguchi, M. Asai, M. Yoshida, M. Kambayashi, K. Hashimoto, Is the metabolic syndrome an intracellular Cushing state? Effects of multiple humoral factors on the transcriptional activity of the hepatic glucocorticoid-activating enzyme (11β-hydroxysteroid dehydrogenase type 1) gene. Mol. Cell. Endocrinol. 285, 10–18 (2008)

    Article  CAS  PubMed  Google Scholar 

  30. P.J. Larsen, P.B. Jensen, R.V. Sørensen, L.K. Larsen, N. Vrang, E.M. Wulff, K. Wassermann, Differential influences of peroxisome proliferator-activated receptors-γ and -α on food intake and energy homeostasis. Diabetes 52, 2249–2259 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. M. Grino, A.J. Zamora, An in situ hybridization histochemistry technique allowing simultaneous visualization by the use of confocal microscopy of three cellular mRNA species within individual neurons. J. Histochem. Cytochem. 46, 753–759 (1998)

    Article  CAS  PubMed  Google Scholar 

  32. V. Achard, S. Boullu-Ciocca, R. Desbriere, G. Nguyen, M. Grino, Renin receptor expression in human adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R274–R282 (2007)

    Article  CAS  PubMed  Google Scholar 

  33. J.W. Tomlinson, E.A. Walker, I.J. Bujalska, N. Draper, G.G. Lavery, M.S. Cooper, M. Hewinson, P.M. Stewart, 11β-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr. Rev. 25, 831–866 (2004)

    Article  CAS  PubMed  Google Scholar 

  34. P.E. Morange, J. Aubert, F. Peiretti, H.R. Lijnen, P. Vague, M. Verdier, R. Négrel, I. Juhan-Vague, M.C. Alessi, Glucocorticoids and insulin promote plasminogen activator inhibitor 1 production by human adipose tissue. Diabetes 48, 890–895 (1999)

    Article  CAS  PubMed  Google Scholar 

  35. A.-J. van Zonneveld, S.A. Curruden, D.J. Loskutoff, Type 1 plasminogen activator inhibitor gene: functional analysis and glucocorticoid regulation of its promoter. Proc. Natl. Acad. Sci. USA 85, 5525–5529 (1988)

    Article  PubMed Central  PubMed  Google Scholar 

  36. N. Matsuura, C. Asano, K. Nagasawa, S. Ito, Y. Sano, Y. Minagawa, Y. Yamada, T. Hattori, S. Watanabe, T. Murohara, K. Nagata, Effects of pioglitazone on cardiac and adipose tissue pathology in rats with metabolic syndrome. Int. J. Cardiol. 179, 360–369 (2015)

    Article  PubMed  Google Scholar 

  37. Y.B. Esterson, K. Zhang, S. Koppaka, S. Kehlenbrink, P. Kishore, P. Raghavan, S.R. Maginley, M. Carey, M. Hawkins, Insulin sensitizing and anti-inflammatory effects of thiazolidinediones are heightened in obese patients. J. Invest. Med. 61, 1152–1160 (2013)

    CAS  Google Scholar 

  38. T.B. Koenen, C.J. Tack, J.M. Kroese, J.M. Kroese, A.R. Hermus, F.C. Sweep, J. van der Laak, A.F. Stalenhoef, J. de Graaf, L.J. van Tits, R. Stientra, Pioglitazone treatment enlarges subcutaneous adipocytes in insulin-resistant patients. J. Clin. Endocrinol. Metab. 94, 4453–4457 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. W.T. Festuccia, S. Oztezcan, M. Laplante, M. Berthiaume, C. Michel, S. Dohgu, R.G. Denis, M.N. Brito, N.A. Brito, D.S. Miller, W.A. Banks, T.J. Bartness, D. Richard, Y. Deshaies, Peroxisome proliferator-activated receptor-γ-mediated positive energy balance in the rat is associated with reduced sympathetic drive to adipose tissues and thyroid status. Endocrinology 149, 2121–2130 (2008)

    Article  CAS  PubMed  Google Scholar 

  40. M.P. Yeager, P.M. Guyre, A.U. Munck, Glucocorticoid regulation of the inflammatory response to injury. Acta Anaesthesiol. Scand. 48, 799–813 (2004)

    Article  CAS  PubMed  Google Scholar 

  41. M.P. Yeager, A.J. Rassias, P.A. Pioli, M.L. Beach, K. Wardwell, J.E. Collins, H.K. Lee, P.M. Guyre, Pretreatment with stress cortisol enhances the human systemic inflammatory response to bacterial endotoxin. Crit. Care Med. 37, 2727–2732 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. S. Ramamoorthy, J.A. Cidlowski, Ligand-induced repression of the glucocorticoid receptor gene is mediated by an NcoR1 repression complex formed by long-range chromatin-interactions with intragenic glucocorticoid response elements. Mol. Cell Biol. 33, 1711–1722 (2013)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. S. Engeli, J. Böhnke, M. Feldpausch, K. Gorzelniak, U. Heintze, J. Janke, F.C. Luft, A.M. Sharma, Regulation of 11β-HSD-1 genes in human adipose tissue: influence of central obesity and weight loss. Obes. Res. 12, 9–17 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. S. Fujisaka, I. Usui, A. Bukhari, M. Ikutani, T. Oya, Y. Kanatani, K. Tsuneyama, Y. Nagai, K. Takatsu, M. Urakaze, M. Kobayashi, K. Tobe, Regulatory mechanisms for adipose tissue M1 and M2 macrophages in diet-induced obese mice. Diabetes 58, 2574–2582 (2009)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. K. Ohashi, J.L. Parker, N. Ouchi, A. Higuchi, J.A. Vita, N. Gokce, A.A. Pedersen, C. Kalthoff, S. Tullin, A. Sams, R. Summer, K. Walsh, Adiponectin promotes macrophage polarization toward an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Grino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boullu-Ciocca, S., Tassistro, V., Dutour, A. et al. Pioglitazone in adult rats reverses immediate postnatal overfeeding-induced metabolic, hormonal, and inflammatory alterations. Endocrine 50, 608–619 (2015). https://doi.org/10.1007/s12020-015-0657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-015-0657-z

Keywords

Navigation