Skip to main content

Advertisement

Log in

Neuronal Network Oscillations in Neurodegenerative Diseases

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Cognitive and behavioral acts go along with highly coordinated spatiotemporal activity patterns in neuronal networks. Most of these patterns are synchronized by coherent membrane potential oscillations within and between local networks. By entraining multiple neurons into a common time regime, such network oscillations form a critical interface between cellular activity and large-scale systemic functions. Synaptic integrity is altered in neurodegenerative diseases, and it is likely that this goes along with characteristic changes of coordinated network activity. This notion is supported by EEG recordings from human patients and from different animal models of such disorders. However, our knowledge about the pathophysiology of network oscillations in neurodegenerative diseases is surprisingly incomplete, and increased research efforts are urgently needed. One complicating factor is the pronounced diversity of network oscillations between different brain regions and functional states. Pathological changes must, therefore, be analyzed separately in each condition and affected area. However, cumulative evidence from different diseases may result, in the future, in more unifying “oscillopathy” concepts of neurodegenerative diseases. In this review, we report present evidence for pathological changes of network oscillations in Alzheimer’s disease (AD), one of the most prominent and challenging neurodegenerative disorders. The heterogeneous findings from AD are contrasted to Parkinson’s disease, where motor-related changes in specific frequency bands do already fulfill criteria of a valid biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abramov, E., Dolev, I., Fogel, H., Ciccotosto, G. D., Ruff, E., & Slutsky, I. (2009). Amyloid-beta as a positive endogenous regulator of release probability at hippocampal synapses. Nature Neuroscience, 12, 1567–1576.

    CAS  PubMed  Google Scholar 

  • Adaya-Villanueva, A., Ordaz, B., Balleza-Tapia, H., Márquez-Ramos, A., & Peña-Ortega, F. (2010). Beta-like hippocampal network activity is differentially affected by amyloid beta peptides. Peptides, 31, 1761–1766.

    CAS  PubMed  Google Scholar 

  • Amatniek, J. C., Hauser, W. A., DelCastillo-Castaneda, C., Jacobs, D. M., Marder, K., Bell, K., et al. (2006). Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia, 47, 867–872.

    PubMed  Google Scholar 

  • Babiloni, C., Binetti, G., Cassetta, E., Cerboneschi, D., Dal Forno, G., Del Percio, C., et al. (2004). Mapping distributed sources of cortical rhythms in mild Alzheimer’s disease. A multicentric EEG study. Neuroimage, 22, 57–67.

    PubMed  Google Scholar 

  • Bähner, F., Weiss, E. K., Birke, G., Maier, N., Schmitz, D., Rudolph, U., et al. (2011). Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proceedings of the National Academy of Sciences of the United States of America, 108, E607–E616.

    PubMed Central  PubMed  Google Scholar 

  • Bakker, A., Krauss, G. L., Albert, M. S., Speck, C. L., Jones, L. R., Stark, C. E., et al. (2012). Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron, 74, 467–474.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bartus, R. T., Dean, R. L, 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408–414.

    CAS  PubMed  Google Scholar 

  • Berger, H. (1929). Über das Elektroenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten, 87, 527–570.

    Google Scholar 

  • Besthorn, C., Zerfass, R., Geiger-Kabisch, C., Sattel, H., Daniel, S., Schreiter-Gasser, U., & Förstl, H. (1997). Discrimination of Alzheimer’s disease and normal aging by EEG data. Electroencephalography and Clinical Neurophysiology, 103, 241–248.

    CAS  PubMed  Google Scholar 

  • Blatow, M., Rozov, A., Katona, I., Hormuzdi, S. G., Meyer, A. H., Whittington, M. A., et al. (2003). A novel network of multipolar bursting interneurons generates theta frequency oscillations in neocortex. Neuron, 38, 805–817.

    CAS  PubMed  Google Scholar 

  • Bokde, A. L., Ewers, M., & Hampel, H. (2009). Assessing neuronal networks: understanding Alzheimer’s disease. Progress in Neurobiology, 89, 125–133.

    PubMed  Google Scholar 

  • Bosboom, J. L., Stoffers, D., Stam, C. J., Berendse, H. W., & Wolters, E Ch. (2009). Cholinergic modulation of MEG resting-state oscillatory activity in Parkinson’s disease related dementia. Clinical Neurophysiology, 120, 910–915.

    CAS  PubMed  Google Scholar 

  • Bosboom, J. L., Stoffers, D., Stam, C. J., van Dijk, B. W., Verbunt, J., Berendse, H. W., & Wolters, E Ch. (2006). Resting state oscillatory brain dynamics in Parkinson’s disease: An MEG study. Clinical Neurophysiology, 117, 2521–2531.

    CAS  PubMed  Google Scholar 

  • Böttger, D., Herrmann, C. S., & von Cramon, D. Y. (2002). Amplitude differences of evoked alpha and gamma oscillations in two different age groups. International Journal of Psychophysiology, 45, 245–251.

    PubMed  Google Scholar 

  • Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: Character and functional significance in the human. Clinical Neurophysiology, 116, 2510–2519.

    PubMed  Google Scholar 

  • Busche, M. A., Chen, X., Henning, H. A., Reichwald, J., Staufenbiel, M., Sakmann, B., & Konnerth, A. (2012). Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 109, 8740–8745.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Busche, M. A., Eichhoff, G., Adelsberger, H., Abramowski, D., Wiederhold, K. H., Haass, C., et al. (2008). Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science, 321, 1686–1689.

    CAS  PubMed  Google Scholar 

  • Buzsáki, G. (2006). Rhythms of the brain. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33, 325–340.

    PubMed  Google Scholar 

  • Buzsáki, G., & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.

    PubMed  Google Scholar 

  • Buzsáki, G., & Gage, F. H. (1989). The cholinergic nucleus basalis: A key structure in neocortical arousal. EXS, 57, 159–171.

    PubMed  Google Scholar 

  • Buzsáki, G., Horvath, Z., Urioste, R., Hetke, J., & Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science, 256, 1025–1027.

    PubMed  Google Scholar 

  • Bylsma, F. W., Peyser, C. E., Folstein, S. E., Folstein, M. F., Ross, C., & Brandt, J. (1994). EEG power spectra in Huntington’s disease: Clinical and neuropsychological correlates. Neuropsychologia, 32, 137–150.

    CAS  PubMed  Google Scholar 

  • Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663–667.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Caso, F., Cursi, M., Magnani, G., Fanelli, G., Falautano, M., Comim, G., et al. (2012). Quantitative EEG and LORETA: Valuable tools in discerning FTD from AD? Neurobiology of Aging, 33, 2343–2356.

    PubMed  Google Scholar 

  • Cea-del Rio, C. A., Lawrence, J. J., Erdelyi, F., Szabo, G., & McBain, C. J. (2011). Cholinergic modulation amplifies the intrinsic oscillatory properties of CA1 hippocampal cholecystokinin-positive interneurons. Journal of Physiology, 589, 609–627.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: An independent component analysis. Journal of Neuroscience, 26, 10222–10231.

    CAS  PubMed  Google Scholar 

  • Chen, C. C., Lin, W. Y., Chan, H. L., Hsu, Y. T., Tu, P. H., Lee, S. T., et al. (2011). Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson’s disease. Experimental Neurology, 231, 91–96.

    PubMed  Google Scholar 

  • Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., et al. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–221.

    PubMed  Google Scholar 

  • Chiaramonti, R., Muscas, G. C., Paganini, M., Müller, T. J., Fallgatter, A. J., Versari, A., & Strik, W. K. (1997). Correlations of topographical EEG features with clinical severity in mild and moderate dementia of Alzheimer type. Neuropsychobiology, 36, 153–158.

    CAS  PubMed  Google Scholar 

  • Claus, J. J., Strijers, R. L., Jonkman, E. J., Ongerboer de Visser, B. W., Jonker, C., Walstra, G. J., et al. (1999). The diagnostic value of electroencephalography in mild senile Alzheimer’s disease. Clinical Neurophysiology, 110, 825–832.

    CAS  PubMed  Google Scholar 

  • Cloud, L. J., Rosenblatt, A., Margolis, R. L., Ross, C. A., Pillai, J. A., Corey-Bloom, J., et al. (2012). Seizures in juvenile Huntington’s disease: Frequency and characterization in a multicenter cohort. Movement Disorders, 27, 1797–1800.

    PubMed  Google Scholar 

  • Cook, I. A., & Leuchter, A. F. (1996). Synaptic dysfunction in Alzheimer’s disease: Clinical assessment using quantitative EEG. Behavioural Brain Research, 78, 15–23.

    CAS  PubMed  Google Scholar 

  • Cross, A. J. (1990). Serotonin in Alzheimer-type dementia and other dementing illnesses. Annals of the New York Academy of Sciences, 600, 405–415.

    CAS  PubMed  Google Scholar 

  • Cummins, T. D., Broughton, M., & Finnigan, S. (2008). Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load. International Journal of Psychophysiology, 70, 75–81.

    PubMed  Google Scholar 

  • Curley, A. A., & Lewis, D. A. (2012). Cortical basket cell dysfunction in schizophrenia. Journal of Physiology, 590, 715–724.

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Felice, F. G., Velasco, P. T., Lambert, M. P., Viola, K., Fernandez, S. J., Ferreira, S. T., & Klein, W. L. (2007). Abeta oligomers induce neuronal oxidative stress through an NMDA receptor-dependent mechanism that is blocked by the Alzheimer’s drug memantine. Journal of Biological Chemistry, 282, 11590–11601.

    PubMed  Google Scholar 

  • de Tommaso, M., De Carlo, F., Difruscolo, O., Massafra, R., Sciruicchio, V., & Bellotti, R. (2003). Detection of subclinical brain electrical activity changes in Huntington’s disease using artificial neural networks. Clinical Neurophysiology, 114, 1237–1245.

    PubMed  Google Scholar 

  • Détári, L., Rasmusson, D. D., & Semba, K. (1999). The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex. Progress in Neurobiology, 58, 249–277.

    PubMed  Google Scholar 

  • Di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Marra, C., et al. (2004). Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 75, 555–559.

    PubMed  Google Scholar 

  • Dougherty, J. J., Wu, J., & Nichols, R. A. (2003). Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. Journal of Neuroscience, 23, 6740–6747.

    CAS  PubMed  Google Scholar 

  • Draguhn, A., Traub, R. D., Schmitz, D., & Jefferys, J. G. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature, 394, 189–192.

    CAS  PubMed  Google Scholar 

  • Dringenberg, H. C. (2000). Alzheimer’s disease: More than a ‘cholinergic disorder’—Evidence that cholinergic–monoaminergic interactions contribute to EEG slowing and dementia. Behavioural Brain Research, 115, 235–249.

    CAS  PubMed  Google Scholar 

  • Driver, J. E., Racca, C., Cunningham, M. O., Towers, S. K., Davies, C. H., Whittington, M. A., & LeBeau, F. E. (2007). Impairment of hippocampal gamma-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP). European Journal of Neuroscience, 26, 1280–1288.

    PubMed  Google Scholar 

  • Düzel, E., Penny, W. D., & Burgess, N. (2010). Brain oscillations and memory. Current Opinion in Neurobiology, 20, 143–149.

    PubMed  Google Scholar 

  • Ego-Stengel, V., & Wilson, M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10.

    PubMed Central  PubMed  Google Scholar 

  • Engel, A. K., Fries, P., & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience, 2, 704–716.

    CAS  PubMed  Google Scholar 

  • Eusebio, A., Chen, C. C., Lu, C. S., Lee, S. T., Tsai, C. H., Limousin, P., et al. (2008). Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson’s disease. Experimental Neurology, 209, 125–130.

    PubMed Central  PubMed  Google Scholar 

  • Fell, J., & Axmacher, N. (2011). The role of phase synchronization in memory processes. Nature Reviews Neuroscience, 12, 105–118.

    CAS  PubMed  Google Scholar 

  • Fell, J., Klaver, P., Elger, C. E., & Fernández, G. (2002). The interaction of rhinal cortex and hippocampus in human declarative memory formation. Reviews in the Neurosciences, 13, 299–312.

    PubMed  Google Scholar 

  • Fell, J., Staresina, B. P., Do Lam, A. T., Widman, G., Helmstaedter, C., Elger, C. E., & Axmacher, N. (2013). Memory modulation by weak synchronous deep brain stimulation: A pilot study. Brain Stimul, 6, 270–273.

    PubMed  Google Scholar 

  • Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106, 7209–7214.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Foffani, G., Priori, A., Egidi, M., Rampini, P., Tamma, F., Caputo, E., et al. (2003). 300-Hz subthalamic oscillations in Parkinson’s disease. Brain, 126, 2153–2163.

    CAS  PubMed  Google Scholar 

  • Frank, M. J. (2006). Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making. Neural Networks, 19, 1120–1136.

    PubMed  Google Scholar 

  • Freund, T. F., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6, 347–470.

    CAS  PubMed  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9, 474–480.

    PubMed  Google Scholar 

  • García-Cabrero, A. M., Guerrero-López, R., Giráldez, B. G., Llorens-Martín, M., Avila, J., Serratosa, J. M., & Sánchez, M. P. (2013). Hyperexcitability and epileptic seizures in a model of frontotemporal dementia. Neurobiology of Diseases, 58, 200–208.

    Google Scholar 

  • Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223.

    CAS  PubMed  Google Scholar 

  • Goutagny, R., & Krantic, S. (2013). Hippocampal oscillatory activity in Alzheimer’s disease: Toward the identification of early biomarkers? Aging and Disease, 4, 134–140.

    PubMed Central  PubMed  Google Scholar 

  • Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. Journal of Neuroscience, 23, 986–993.

    CAS  PubMed  Google Scholar 

  • Gregory, R. (2008). Pedunculopontine nucleus stimulation for people with Parkinson’s disease? A clinical perspective. British Journal of Neurosurgery, 22(Suppl 1), S13–S15.

    PubMed  Google Scholar 

  • Grillner, S. (2006). Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 52, 751–766.

    CAS  PubMed  Google Scholar 

  • Gruber, T., Müller, M. M., & Keil, A. (2002). Modulation of induced gamma band responses in a perceptual learning task in the human EEG. Journal of Cognitive Neuroscience, 14, 732–744.

    PubMed  Google Scholar 

  • Gruber, T., Müller, M. M., Keil, A., & Elbert, T. (1999). Selective visual–spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074–2085.

    CAS  PubMed  Google Scholar 

  • Haier, R. J., Alkire, M. T., White, N. S., Uncapher, M. R., Head, E., Lott, I. T., & Cotman, C. W. (2003). Temporal cortex hypermetabolism in Down syndrome prior to the onset of dementia. Neurology, 61, 1673–1679.

    CAS  PubMed  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30, 357–364.

    CAS  PubMed  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science, 256, 184–185.

    CAS  PubMed  Google Scholar 

  • Hatashita, S., & Yamasaki, H. (2013). Diagnosed mild cognitive impairment due to Alzheimer’s disease with PET biomarkers of beta amyloid and neuronal dysfunction. PLoS ONE, 8, e66877.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hermann, D., Both, M., Ebert, U., Gross, G., Schoemaker, H., Draguhn, A., et al. (2009). Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave–ripple complexes. Neuroscience, 162, 1081–1090.

    CAS  PubMed  Google Scholar 

  • Hermann, D., Mezler, M., Müller, M. K., Wicke, K., Gross, G., Draguhn, A., et al. (2013). Synthetic Aβ oligomers (Aβ(1-42) globulomer) modulate presynaptic calcium currents: Prevention of Aβ-induced synaptic deficits by calcium channel blockers. European Journal of Pharmacology, 702, 44–55.

    CAS  PubMed  Google Scholar 

  • Herrmann, C. S., & Demiralp, T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clinical Neurophysiology, 116, 2719–2733.

    CAS  PubMed  Google Scholar 

  • Igarashi, K. M., Lu, L., Colgin, L. L., Moser, M. B., & Moser, E. I. (2014). Coordination of entorhinal–hippocampal ensemble activity during associative learning. Nature, 510, 143–147.

    CAS  PubMed  Google Scholar 

  • Jelic, V., Blomberg, M., Dierks, T., Basun, H., Shigeta, M., Julin, P., et al. (1998). EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport, 9, 157–160.

    CAS  PubMed  Google Scholar 

  • Jelic, V., Julin, P., Shigeta, M., Nordberg, A., Lannfelt, L., Winblad, B., & Wahlund, L. O. (1997). Apolipoprotein E epsilon4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. Journal of Neurology, Neurosurgery and Psychiatry, 63, 59–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30, 317–324.

    CAS  PubMed  Google Scholar 

  • Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clinical Neurophysiology, 115, 1490–1505.

    PubMed  Google Scholar 

  • Jyoti, A., Plano, A., Riedel, G., & Platt, B. (2010). EEG, activity, and sleep architecture in a transgenic AβPPswe/PSEN1A246E Alzheimer’s disease mouse. Journal of Alzheimer’s Disease, 22, 873–887.

    PubMed  Google Scholar 

  • Kaiser, J., Ripper, B., Birbaumer, N., & Lutzenberger, W. (2003). Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. Neuroimage, 20, 816–827.

    PubMed  Google Scholar 

  • Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., et al. (2003). APP processing and synaptic function. Neuron, 37, 925–937.

    CAS  PubMed  Google Scholar 

  • Kawaguchi, Y., & Kondo, S. (2002). Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. Journal of Neurocytology, 31, 277–287.

    PubMed  Google Scholar 

  • Kelly, B. L., & Ferreira, A. (2006). Beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. Journal of Biological Chemistry, 281, 28079–28089.

    CAS  PubMed  Google Scholar 

  • Kelly, B. L., & Ferreira, A. (2007). Beta-amyloid disrupted synaptic vesicle endocytosis in cultured hippocampal neurons. Neuroscience, 147, 60–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Klausberger, T. (2009). GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus. European Journal of Neuroscience, 30, 947–957.

    PubMed  Google Scholar 

  • Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321, 53–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kotzauer, N., & Katz, R. (2013). Regulatory innovation and drug development for early-stage Alzheimer‘s disease. New England Journal of Medicine, 368, 1169–1171.

    Google Scholar 

  • Kühn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–220.

    PubMed  Google Scholar 

  • Kumar-Singh, S., Dewachter, I., Moechars, D., Lübke, U., De Jonghe, C., Ceuterick, C., et al. (2000). Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiology of Diseases, 7, 9–22.

    CAS  Google Scholar 

  • Lacor, P. N., Bruniel, M. C., Furlow, P. W., Sanz Clemente, A., Velasco, P. T., Wood, M., et al. (2007). Aß oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. Journal of Neuroscience, 27, 796–807.

    CAS  PubMed  Google Scholar 

  • LaFerla, F. M. (2010). Pathways linking Abeta and tau pathologies. Biochemical Society Transactions, 38, 993–995.

    CAS  PubMed  Google Scholar 

  • LaFerla, F. M., Tinkle, B. T., Bieberich, C. J., Haudenschild, C. C., & Jay, G. (1995). The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nature Genetics, 9, 21–30.

    CAS  PubMed  Google Scholar 

  • Lalonde, R., Dumont, M., Staufenbiel, M., & Strazielle, C. (2005). Neurobehavioral characterization of APP23 transgenic mice with the SHIRPA primary screen. Behavioural Brain Research, 157, 91–98.

    CAS  PubMed  Google Scholar 

  • Larner, A. J. (2010). Epileptic seizures in AD patients. Neuromolecular Medicine, 12, 71–77.

    CAS  PubMed  Google Scholar 

  • Lasztóczi, B., & Klausberger, T. (2014). Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron, 81, 1126–1139.

    PubMed  Google Scholar 

  • Lee, H., Fell, J., & Axmacher, N. (2013). Electrical engram: How deep brain stimulation affects memory. Trends in Cognitive Sciences, 17, 574–584.

    PubMed  Google Scholar 

  • Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. (2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35, 57–67.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lindau, M., Jelic, V., Johansson, S. E., Andersen, C., Wahlund, L. O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 15, 106–114.

    CAS  PubMed  Google Scholar 

  • Locatelli, T., Cursi, M., Liberati, D., Franceschi, M., & Comi, G. (1998). EEG coherence in Alzheimer’s disease. Electroencephalography and Clinical Neurophysiology, 106, 229–237.

    CAS  PubMed  Google Scholar 

  • López-Azcárate, J., Tainta, M., Rodríguez-Oroz, M. C., Valencia, M., González, R., Guridi, J., et al. (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. Journal of Neuroscience, 30, 6667–6677.

    PubMed  Google Scholar 

  • Lozano, A. M., & Lipsman, N. (2013). Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron, 77, 406–424.

    CAS  PubMed  Google Scholar 

  • Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E., et al. (2003). Functional deactivations: Change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Sciences of the United States of America, 100, 14504–14509.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mann, E. O., & Paulsen, O. (2007). Role of GABAergic inhibition in hippocampal network oscillations. Trends in Neurosciences, 30, 343–349.

    CAS  PubMed  Google Scholar 

  • Mendez, M., & Lim, G. (2003). Seizures in elderly patients with dementia: Epidemiology and management. Drugs and Aging, 20, 791–803.

    CAS  PubMed  Google Scholar 

  • Metherate, R., Cox, C. L., & Ashe, J. H. (1992). Cellular bases of neocortical activation: Modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine. Journal of Neuroscience, 12, 4701–4711.

    CAS  PubMed  Google Scholar 

  • Mezler, M., Barghorn, S., Schoemaker, H., Gross, G., & Nimmrich, V. (2012). A β-amyloid oligomer directly modulates P/Q-type calcium currents in Xenopus oocytes. British Journal of Pharmacology, 165, 1572–1583.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., et al. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 2181–2186.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minkeviciene, R., Rheims, S., Dobszay, M. B., Zilberter, M., Hartikainen, J., Fülöp, L., et al. (2009). Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. Journal of Neuroscience, 29, 3453–3462.

    CAS  PubMed  Google Scholar 

  • Moechars, D., Lorent, K., & Van Leuven, F. (1999). Premature death in transgenic mice that overexpress a mutant amyloid precursor protein is preceded by severe neurodegeneration and apoptosis. Neuroscience, 91, 819–830.

    CAS  PubMed  Google Scholar 

  • Mondadori, C. R., Buchmann, A., Mustovic, H., Schmidt, C. F., Boesiger, P., Nitsch, R. M., et al. (2006). Enhanced brain activity may precede the diagnosis of Alzheimer’s disease by 30 years. Brain, 129, 2908–2922.

    PubMed  Google Scholar 

  • Montez, T., Poil, S. S., Jones, B. F., Manshanden, I., Verbunt, J. P., van Dijk, B. W., et al. (2009). Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 1614–1619.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Montplaisir, J., Petit, D., Gauthier, S., Gaudreau, H., & Décary, A. (1998). Sleep disturbances and eeg slowing in Alzheimer’s disease. Sleep Research Online, 1, 147–151.

    CAS  PubMed  Google Scholar 

  • Moraes Wdos, S., Poyares, D. R., Guilleminault, C., Ramos, L. R., Bertolucci, P. H., & Tufik, S. (2006). The effect of donepezil on sleep and REM sleep EEG in patients with Alzheimer disease: A double-blind placebo-controlled study. Sleep, 29, 199–205.

    PubMed  Google Scholar 

  • Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., et al. (1998). Frontotemporal lobar degeneration. A consensus on clinical diagnostic criteria. Neurology, 51, 1546–1554.

    CAS  PubMed  Google Scholar 

  • Nimmrich, V., & Ebert, U. (2009). Is Alzheimer’s disease a result of presynaptic failure? Synaptic dysfunctions induced by oligomeric beta-amyloid. Reviews in the Neurosciences, 20, 1–12.

    CAS  PubMed  Google Scholar 

  • Nimmrich, V., Grimm, C., Draguhn, A., Barghorn, S., Lehmann, A., Schoemaker, H., et al. (2008). Amyloid ß oligomers (Aß 1-42 globulomer) suppress spontaneous synaptic activity by inhibition of P/Q calcium currents. Journal of Neuroscience, 28, 788–797.

    CAS  PubMed  Google Scholar 

  • Nimmrich, V., Maier, N., Schmitz, D., & Draguhn, A. (2005). Induced sharp wave–ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices. Journal of Physiology, 563, 663–670.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishida, K., Yoshimura, M., Isotani, T., Yoshida, T., Kitaura, Y., Saito, A., et al. (2011). Differences in quantitative EEG between frontotemporal dementia and Alzheimer’s disease as revealed by LORETA. Clinical Neurophysiology, 122, 1718–1725.

    CAS  PubMed  Google Scholar 

  • Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117, 1990–1995.

    PubMed  Google Scholar 

  • Painold, A., Anderer, P., Holl, A. K., Letmaier, M., Saletu-Zyhlarz, G. M., Saletu, B., & Bonelli, R. M. (2011). EEG low-resolution brain electromagnetic tomography (LORETA) in Huntington’s disease. Journal of Neurology, 258, 840–854.

    PubMed  Google Scholar 

  • Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55, 697–711.

    CAS  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2009). Epilepsy and cognitive impairments in Alzheimer Disease. Archives of Neurology, 66, 435–440.

    PubMed Central  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010). Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: Two faces of the same coin? Neuromolecular. Med, 12, 48–55.

    CAS  Google Scholar 

  • Peña-Ortega, F., & Bernal-Pedraza, R. (2012). Amyloid Beta Peptide slows down sensory-induced hippocampal oscillations. International Journal of Peptides, 2012, 236289.

    PubMed Central  PubMed  Google Scholar 

  • Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46, 1679–1687.

    CAS  PubMed  Google Scholar 

  • Petit, D., Lorrain, D., Gauthier, S., & Montplaisir, J. (1993). Regional spectral analysis of the REM sleep EEG in mild to moderate Alzheimer’s disease. Neurobiology of Aging, 14, 141–145.

    CAS  PubMed  Google Scholar 

  • Pignatelli, M., Lebreton, F., Cho, Y. H., & Leinekugel, X. (2012). “Ectopic” theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington’s disease. Neurobiology of Diseases, 48, 409–417.

    Google Scholar 

  • Pihlajamäki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. The American Journal of Geriatric Psychiatry, 16, 283–292.

    PubMed  Google Scholar 

  • Pijnenburg, Y. A., Strijers, R. L., Made, Y. V., van der Flier, W. M., Scheltens, P., & Stam, C. J. (2008). Investigation of resting-state EEG functional connectivity in frontotemporal lobar degeneration. Clinical Neurophysiology, 119, 1732–1738.

    PubMed  Google Scholar 

  • Platt, B., Drever, B., Koss, D., Stoppelkamp, S., Jyoti, A., Plano, A., et al. (2011). Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1. PLoS ONE, 6, e27068.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Polanía, R., Nitsche, M. A., Korman, C., Batsikadze, G., & Paulus, W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22, 1314–1318.

    PubMed  Google Scholar 

  • Ponomareva, N., Klyushnikov, S., Abramycheva, N., Malina, D., Scheglova, N., Fokin, V., et al. (2014). Alpha-theta border EEG abnormalities in preclinical Huntington’s disease. Journal of the Neurological Sciences, 344, 114–120.

    PubMed  Google Scholar 

  • Pooler, A. M., Noble, W., & Hanger, D. P. (2014). A role for tau at the synapse in Alzheimer’s disease pathogenesis. Neuropharmacology, 76(Pt A), 1–8.

    CAS  PubMed  Google Scholar 

  • Prichep, L. S. (2007). Quantitative EEG and electromagnetic brain imaging in aging and in the evolution of dementia. Annals of the New York Academy of Sciences, 1097, 156–167.

    PubMed  Google Scholar 

  • Rabinowicz, A. L., Starkstein, S. E., Leiguarda, R. C., & Coleman, A. E. (2000). Transient epileptic amnesia in dementia: A treatable unrecognized cause of episodic amnestic wandering. Alzheimer Disease and Associated Disorders, 14, 231–233.

    CAS  PubMed  Google Scholar 

  • Ramsden, M., Henderson, Z., & Pearson, H. A. (2002). Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid beta protein (1–40) is dependent on solubility status. Brain Research, 956, 254–261.

    CAS  PubMed  Google Scholar 

  • Ray, P. G., & Jackson, W. J. (1991). Lesions of nucleus basalis alter ChAT activity and EEG in rat frontal neocortex. Electroencephalography and Clinical Neurophysiology, 79, 62–68.

    CAS  PubMed  Google Scholar 

  • Ray, N. J., Jenkinson, N., Wang, S., Holland, P., Brittain, J. S., Joint, C., et al. (2008). Local field potential beta activity in the subthalamic nucleus of patients with Parkinson’s disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Experimental Neurology, 213, 108–113.

    CAS  PubMed  Google Scholar 

  • Ribary, U., Ioannides, A. A., Singh, K. D., Hasson, R., Bolton, J. P., Lado, F., et al. (1991). Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proceedings of the National Academy of Sciences of the United States of America, 88, 11037–11041.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rodriguez, G., Copello, F., Vitali, P., Perego, G., & Nobili, F. (1999). EEG spectral profile to stage Alzheimer’s disease. Clinical Neurophysiology, 110, 1831–1837.

    CAS  PubMed  Google Scholar 

  • Romanelli, M. F., Morris, J. C., Ashkin, K., & Coben, L. A. (1990). Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Archives of Neurology, 47, 847–850.

    CAS  PubMed  Google Scholar 

  • Rombouts, S. A., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: An fMRI study. Human Brain Mapping, 26, 231–239.

    PubMed  Google Scholar 

  • Rosen, H. J., Hartikainen, K. M., Jagust, W., Kramer, J. H., Reed, B. R., Cummings, J. L., et al. (2002). Utility of clinical criteria in differentiating frontotemporal lobar degeneration (FTLD) from AD. Neurology, 58, 1608–1615.

    PubMed  Google Scholar 

  • Sanchez, P. E., Zhu, L., Verret, L., Vossel, K. A., Orr, A. G., Cirrito, J. R., et al. (2012). Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proceedings of the National Academy of Sciences of the United States of America, 109, E2895–E2903.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schlingloff, D., Káli, S., Freund, T. F., Hajos, N., & Gulyás, A. I. (2014). Mechanisms of sharp wave initiation and ripple generation. Journal of Neuroscience, 34, 11385–11398.

    PubMed  Google Scholar 

  • Schmitz, D., Fisahn, A., Draguhn, A., Buhl, E. H., Petrasch-Parwez, E., Dermietzel, R., et al. (2001). Axo-axonal coupling. A novel mechanism for ultrafast neuronal communication. Neuron, 31, 831–840.

    CAS  PubMed  Google Scholar 

  • Schnitzler, A., & Gross, J. (2005). Normal and pathological oscillatory communication in the brain. Nature Reviews Neuroscience, 6, 285–296.

    CAS  PubMed  Google Scholar 

  • Schnitzler, A., Timmermann, L., & Gross, J. (2006). Physiological and pathological oscillatory networks in the human motor system. Journal of Physiology-Paris, 99, 3–7.

    Google Scholar 

  • Scott, L., Feng, J., Kiss, T., Needle, E., Atchison, K., Kawabe, T. T., et al. (2012). Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice. Neurobiology of Aging, 33, 1481.e13–1481.e23.

    CAS  Google Scholar 

  • Scott, D. F., Heathfield, K. W., Toone, B., & Margerison, J. H. (1972). The EEG in Huntington’s chorea: A clinical and neuropathological study. Journal of Neurology, Neurosurgery and Psychiatry, 35, 97–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62, 42–52.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.

    CAS  PubMed  Google Scholar 

  • Shah, M., & Catafau, A. M. (2014). Molecular imaging insights into neurodegeneration: Focus on tau PET radiotracers. Journal of Nuclear Medicine, 55, 871–874.

    CAS  Google Scholar 

  • Shankar, G. M., Bloodgood, B. L., Townsend, M., Walsh, D. M., Selkoe, D. J., & Sabatini, B. L. (2007). Natural oligomers of the Alzheimer Amyloid-ß protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signalling pathway. Journal of Neuroscience, 27, 2866–2875.

    CAS  PubMed  Google Scholar 

  • Siegel, M., Donner, T. H., & Engel, A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nature Reviews Neuroscience, 13, 121–134.

    CAS  PubMed  Google Scholar 

  • Simon, A., Traub, R. D., Vladimirov, N., Jenkins, A., Nicholson, C., Whittaker, R. G., et al. (2014). Gap junction networks can generate both ripple-like and fast ripple-like oscillations. European Journal of Neuroscience, 39, 46–60.

    PubMed Central  PubMed  Google Scholar 

  • Snyder, E. M., Nong, Y., Almeida, C. G., Paul, S., Moran, T., Choi, E. Y., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-beta. Nature Neuroscience, 8, 1051–1058.

    CAS  PubMed  Google Scholar 

  • Sperfeld, A. D., Collatz, M. B., Baier, H., Palmbach, M., Storch, A., Schwarz, J., et al. (1999). FTDP-17: An early-onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation. Annals of Neurology, 46, 708–715.

    CAS  PubMed  Google Scholar 

  • Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of the New York Academy of Sciences, 1097, 146–155.

    PubMed  Google Scholar 

  • Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12, 27–43.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stam, C. J., van Cappellen van Walsum, A. M., Pijnenburg, Y. A., Berendse, H. W., de Munck, J. C., Scheltens, P., & van Dijk, B. W. (2002). Generalized synchronization of MEG recordings in Alzheimer’s Disease: Evidence for involvement of the gamma band. Journal of Clinical Neurophysiology, 19, 562–574.

    PubMed  Google Scholar 

  • Stark, E., Roux, L., Eichler, R., Senzai, Y., Royer, S., & Buzsáki, G. (2014). Pyramidal cell–interneuron interactions underlie hippocampal ripple oscillations. Neuron, 83, 467–480.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steriade, M. (2003). The corticothalamic system in sleep. Front. Biosci, 8, d878–d899.

    CAS  PubMed  Google Scholar 

  • Stoffers, D., Bosboom, J. L., Deijen, J. B., Wolters, E. C., Berendse, H. W., & Stam, C. J. (2007). Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain, 130, 1847–1860.

    CAS  PubMed  Google Scholar 

  • Swaab, D. F., Lucassen, P. J., Salehi, A., Scherder, E. J., van Someren, E. J., & Verwer, R. W. (1998). Reduced neuronal activity and reactivation in Alzheimer’s disease. Progress in Brain Research, 117, 343–377.

    CAS  PubMed  Google Scholar 

  • Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22, 2963–2976.

    CAS  PubMed  Google Scholar 

  • Thevathasan, W., Pogosyan, A., Hyam, J. A., Jenkinson, N., Foltynie, T., Limousin, P., et al. (2012). Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism. Brain, 135, 148–160.

    PubMed Central  PubMed  Google Scholar 

  • Timmermann, L., & Florin, E. (2012). Parkinson’s disease and pathological oscillatory activity: Is the beta band the bad guy? New lessons learned from low-frequency deep brain stimulation. Experimental Neurology, 233, 123–125.

    CAS  PubMed  Google Scholar 

  • Traub, R. D., Draguhn, A., Whittington, M. A., Baldeweg, T., Bibbig, A., Buhl, E. H., & Schmitz, D. (2002). Axonal gap junctions between principal neurons: A novel source of network oscillations, and perhaps epileptogenesis. Reviews in the Neurosciences, 13, 1–30.

    PubMed  Google Scholar 

  • Traub, R. D., & Whittington, M. A. (2010). Cortical oscillations in health and disease. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Trottenberg, T., Fogelson, N., Kühn, A. A., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Subthalamic gamma activity in patients with Parkinson’s disease. Experimental Neurology, 200, 56–65.

    PubMed  Google Scholar 

  • van der Hiele, K., Jurgens, C. K., Vein, A. A., Reijntjes, R. H., Witjes-Ané, M. N., Roos, R. A., et al. (2007). Memory activation reveals abnormal EEG in preclinical Huntington’s disease. Movement Disorders, 22, 690–695.

    PubMed  Google Scholar 

  • van der Zee, J., Sleegers, K., & Van Broeckhoven, C. (2008). Invited article: the Alzheimer disease-frontotemporal lobar degeneration spectrum. Neurology, 71, 1191–1197.

    PubMed  Google Scholar 

  • van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., & Riedel, W. J. (2008). Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment. J Neural Transm, 115, 1301–1311.

    PubMed Central  PubMed  Google Scholar 

  • van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 32, 24–30.

    PubMed  Google Scholar 

  • Verret, L., Mann, E. O., Hang, G. B., Barth, A. M., Cobos, I., Ho, K., et al. (2012). Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model. Cell, 149, 708–721.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Villette, V., Poindessous-Jazat, F., Simon, A., Léna, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30, 10991–11003.

    CAS  PubMed  Google Scholar 

  • Vreugdenhil, M., & Toescu, E. C. (2005). Age-dependent reduction of gamma oscillations in the mouse hippocampus in vitro. Neuroscience, 132, 1151–1157.

    CAS  PubMed  Google Scholar 

  • Wada, Y., Nanbu, Y., Koshino, Y., Yamaguchi, N., & Hashimoto, T. (1998). Reduced interhemispheric EEG coherence in Alzheimer disease: Analysis during rest and photic stimulation. Alzheimer Disease and Associated Disorders, 12, 175–181.

    CAS  PubMed  Google Scholar 

  • Walsh, D. M., & Selkoe, D. J. (2007). Aβ oligomers—A decade of discovery. Journal of Neurochemistry, 101, 1172–1184.

    CAS  PubMed  Google Scholar 

  • Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. Journal of Neurophysiology, 101, 789–802.

    CAS  PubMed  Google Scholar 

  • Wenk, G. L., Zajaczkowski, W., & Danysz, W. (1997). Neuroprotection of acetylcholinergic basal forebrain neurons by memantine and neurokinin B. Behavioural Brain Research, 83, 129–133.

    CAS  PubMed  Google Scholar 

  • Whittington, M. A., & Traub, R. D. (2003). Interneuron Diversity series: Inhibitory interneurons and network oscillations in vitro. Trends in Neurosciences, 26, 676–682.

    CAS  PubMed  Google Scholar 

  • Wu, J., Anwyl, R., & Rowan, M. J. (1995). Beta-Amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. Neuroreport, 6, 2409–2413.

    CAS  PubMed  Google Scholar 

  • Yamamoto, T., & Hirano, A. (1985). Nucleus raphe dorsalis in Alzheimer’s disease: Neurofibrillary tangles and loss of large neurons. Annals of Neurology, 17, 573–577.

    CAS  PubMed  Google Scholar 

  • Yener, G. G., Emek-Savaş, D. D., Lizio, R., Çavuşoğlu, B., Carducci, F., Ada, E., et al. (2015). Frontal delta event-related oscillations relate to frontal volume in mild cognitive impairment and healthy controls. International Journal of Psychophysiology. doi:10.1016/j.ijpsycho.2015.02.005.

  • Yener, G., Güntekin, B., & Başar, E. (2008). Event-related delta oscillatory responses of Alzheimer patients. European Journal of Neurology, 15, 540–547.

    CAS  PubMed  Google Scholar 

  • Yu, J. T., Chang, R. C., & Tan, L. (2009). Calcium dysregulation in Alzheimer’s disease: From mechanisms to therapeutic opportunities. Progress in Neurobiology, 89, 240–255.

    CAS  PubMed  Google Scholar 

  • Zempel, H., & Mandelkow, E. M. (2012). Linking amyloid-β and tau: Amyloid-β induced synaptic dysfunction via local wreckage of the neuronal cytoskeleton. Neurodegenerative Diseases, 10, 64–72.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Han, D., Tan, X., Feng, J., Guo, Y., & Ding, Y. (2012). Diagnostic accuracy of 18 F-FDG and 11 C-PIB-PET for prediction of short-term conversion to Alzheimer’s disease in subjects with mild cognitive impairment. International Journal of Clinical Practice, 66, 185–189.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Volker Nimmrich is an employee of AbbVie, and this review was supported by AbbVie. AbbVie also participated in the approval of the review. Andreas Draguhn is faculty at the University of Heidelberg. Nikolai Axmacher is faculty at the University of Bochum and member of the DZNE, Bonn.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai Axmacher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimmrich, V., Draguhn, A. & Axmacher, N. Neuronal Network Oscillations in Neurodegenerative Diseases. Neuromol Med 17, 270–284 (2015). https://doi.org/10.1007/s12017-015-8355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-015-8355-9

Keywords

Navigation