Skip to main content

Advertisement

Log in

Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Tetrodotoxin-resistant (TTX-R) sodium channels NaV1.8 and NaV1.9 in dorsal root ganglion (DRG) neurons play important roles in pathological pain. We recently reported that melittin, the major toxin of whole bee venom, induced action potential firings in DRG neurons even in the presence of a high concentration (500 nM) of TTX, indicating the contribution of TTX-R sodium channels. This hypothesis is fully investigated in the present study. After subcutaneous injection of melittin, NaV1.8 and NaV1.9 significantly upregulate mRNA and protein expressions, and related sodium currents also increase. Double immunohistochemical results show that NaV1.8-positive neurons are mainly medium- and small-sized, whereas NaV1.9-positive ones are only small-sized. Antisense oligodeoxynucleotides (AS ODNs) targeting NaV1.8 and NaV1.9 are used to evaluate functional significance of the increased expressions of TTX-R sodium channels. Behavioral tests demonstrate that AS ODN targeting NaV1.9, but not NaV1.8, reverses melittin-induced heat hypersensitivity. Neither NaV1.8 AS ODN nor NaV1.9 AS ODN affects melittin-induced mechanical hypersensitivity. These results provide previously unknown evidence that upregulation of NaV1.9, but not NaV1.8, in small-sized DRG neurons contributes to melittin-induced heat hypersensitivity. Furthermore, melittin-induced biological effect indicates a potential strategy to study properties of TTX-R sodium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amaya, F., Wang, H., Costigan, M., et al. (2006). The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. Journal of Neuroscience, 26, 12852–12860.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. D., Chandra, S. Y., Ding, Y., Waxman, S. G., & Wood, J. N. (2003). GTP-induced tetrodotoxin-resistant Na + current regulates excitability in mouse and rat small diameter sensory neurones. Journal of Physiology, 548, 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Basbaum, A. I., Bautista, D. M., Scherrer, G., & Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell, 139, 267–284.

    Article  PubMed  CAS  Google Scholar 

  • Cardenas, L. M., Cardenas, C. G., & Scroggs, R. S. (2001). 5HT increases excitability of nociceptor-like rat dorsal root ganglion neurons via cAMP-coupled TTX-resistant Na(+) channels. Journal of Neurophysiology, 86, 241–248.

    PubMed  CAS  Google Scholar 

  • Chen, J., & Lariviere, W. R. (2010). The nociceptive and anti-nociceptive effects of bee venom injection and therapy: A double-edged sword. Progress in Neurobiology, 92, 151–183.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. N., Li, K. C., Li, Z., et al. (2006). Effects of bee venom peptidergic components on rat pain-related behaviors and inflammation. Neuroscience, 138, 631–640.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., Luo, C., Li, H., & Chen, H. (1999). Primary hyperalgesia to mechanical and heat stimuli following subcutaneous bee venom injection into the plantar surface of hindpaw in the conscious rat: A comparative study with the formalin test. Pain, 83, 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Coste, B., Crest, M., & Delmas, P. (2007). Pharmacological dissection and distribution of NaN/Nav1.9, T-type Ca2 + currents, and mechanically activated cation currents in different populations of DRG neurons. Journal of General Physiology, 129, 57–77.

    Article  PubMed  CAS  Google Scholar 

  • Coste, B., Osorio, N., Padilla, F., Crest, M., & Delmas, P. (2004). Gating and modulation of presumptive NaV1.9 channels in enteric and spinal sensory neurons. Molecular and Cellular Neuroscience, 26, 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Cummins, T. R., Dib-Hajj, S. D., Black, J. A., Akopian, A. N., Wood, J. N., & Waxman, S. G. (1999). A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. Journal of Neuroscience, 19, C43.

    Google Scholar 

  • Dai, Y., Fukuoka, T., Wang, H., Yamanaka, H., Obata, K., Tokunaga, A., et al. (2004). Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain, 108, 258–266.

    Article  PubMed  CAS  Google Scholar 

  • Dib-Hajj, S., Black, J. A., Cummins, T. R., & Waxman, S. G. (2002). NaN/Nav1.9: A sodium channel with unique properties. Trends in Neurosciences, 25, 253–259.

    Article  PubMed  CAS  Google Scholar 

  • Du, Y. R., Xiao, Y., Lu, Z. M., et al. (2011). Melittin activates TRPV1 receptors in primary nociceptive sensory neurons via the phospholipase A2 cascade pathways. Biochemical and Biophysical Research Communications, 408, 32–37.

    Article  PubMed  CAS  Google Scholar 

  • England, S., Bevan, S., & Docherty, R. J. (1996). PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. Journal of Physiology, 495, 429–440.

    PubMed  CAS  Google Scholar 

  • Fang, X., Djouhri, L., Black, J. A., Dib-Hajj, S. D., Waxman, S. G., & Lawson, S. N. (2002). The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. Journal of Neuroscience, 22, 7425–7433.

    PubMed  CAS  Google Scholar 

  • Fukuoka, T., Kobayashi, K., Yamanaka, H., Obata, K., Dai, Y., & Noguchi, K. (2008). Comparative study of the distribution of the alpha-subunits of voltage-gated sodium channels in normal and axotomized rat dorsal root ganglion neurons. The Journal of Comparative Neurology, 510, 188–206.

    Article  PubMed  CAS  Google Scholar 

  • Gold, M. S. (1999). Tetrodotoxin-resistant Na + currents and inflammatory hyperalgesia. Proceedings of the National Academy of Sciences of the United States of America, 96, 7645–7649.

    Article  PubMed  CAS  Google Scholar 

  • Goldin, A. L. (2001). Resurgence of sodium channel research. Annual Review of Physiology, 63, 871–894.

    Article  PubMed  CAS  Google Scholar 

  • Hao, J., Liu, M. G., Yu, Y. Q., Cao, F. L., Li, Z., Lu, Z. M., et al. (2008). Roles of peripheral mitogen-activated protein kinases in melittin-induced nociception and hyperalgesia. Neuroscience, 152, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  • Hillsley, K., Lin, J. H., Stanisz, A., Grundy, D., Aerssens, J., Peeters, P. J., et al. (2006). Dissecting the role of sodium currents in visceral sensory neurons in a model of chronic hyperexcitability using Nav1.8 and Nav1.9 null mice. Journal of Physiology, 576, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Katz, E. J., & Gold, M. S. (2006). Inflammatory hyperalgesia: A role for the C-fiber sensory neuron cell body? Journal of Pain, 7, 170–178.

    Article  PubMed  CAS  Google Scholar 

  • Li, K. C., & Chen, J. (2004). Altered pain-related behaviors and spinal neuronal responses produced by s.c. injection of melittin in rats. Neuroscience, 126, 753–762.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Z. M., Xie, F., Fu, H., Liu, M. G., Cao, F. L., Hao, J., et al. (2008). Roles of peripheral P2X and P2Y receptors in the development of melittin-induced nociception and hypersensitivity. Neurochemical Research, 33, 2085–2091.

    Article  PubMed  CAS  Google Scholar 

  • McCleskey, E. W., & Gold, M. S. (1999). Ion channels of nociception. Annual Review of Physiology, 61, 835–856.

    Article  PubMed  CAS  Google Scholar 

  • Mogil, J. S. (2009). Animal models of pain: progress and challenges. Nature Reviews Neuroscience, 10, 283–294.

    Article  PubMed  CAS  Google Scholar 

  • Ostman, J. A., Nassar, M. A., Wood, J. N., & Baker, M. D. (2008). GTP up-regulated persistent Na + current and enhanced nociceptor excitability require NaV1.9. Journal of Physiology, 586, 1077–1087.

    Article  PubMed  CAS  Google Scholar 

  • Pawlak, M., Stankowski, S., & Schwarz, G. (1991). Melittin induced voltage-dependent conductance in DOPC lipid bilayers. Biochimica et Biophysica Acta, 1062, 94–102.

    Article  PubMed  CAS  Google Scholar 

  • Porreca, F., Lai, J., Bian, D., et al. (1999). A comparison of the potential role of the tetrodotoxin-insensitive sodium channels, PN3/SNS and NaN/SNS2, in rat models of chronic pain. Proceedings of the National Academy of Sciences of the United States of America, 96, 7640–7644.

    Article  PubMed  CAS  Google Scholar 

  • Priest, B. T., Murphy, B. A., Lindia, J. A., et al. (2005). Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proceedings of the National Academy of Sciences of the United States of America, 102, 9382–9387.

    Article  PubMed  CAS  Google Scholar 

  • Raghuraman, H., & Chattopadhyay, A. (2007). Melittin: a membrane-active peptide with diverse functions. Bioscience Reports, 27, 189–223.

    Article  PubMed  CAS  Google Scholar 

  • Renganathan, M., Cummins, T. R., & Waxman, S. G. (2001). Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. Journal of Neurophysiology, 86, 629–640.

    PubMed  CAS  Google Scholar 

  • Rex, S. (1996). Pore formation induced by the peptide melittin in different lipid vesicle membranes. Biophysical Chemistry, 58, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Rush, A. M., Dib-Hajj, S. D., Liu, S., Cummins, T. R., Black, J. A., & Waxman, S. G. (2006). A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. Proceedings of the National Academy of Sciences of the United States of America, 103, 8245–8250.

    Article  PubMed  CAS  Google Scholar 

  • Rush, A. M., & Waxman, S. G. (2004). PGE2 increases the tetrodotoxin-resistant Nav1.9 sodium current in mouse DRG neurons via G-proteins. Brain Research, 1023, 264–271.

    Article  PubMed  CAS  Google Scholar 

  • Shin, H. K., & Kim, J. H. (2004). Melittin selectively activates capsaicin-sensitive primary afferent fibers. NeuroReport, 15, 1745–1749.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, M., Cummins, T. R., Ishikawa, K., Dib-Hajj, S. D., Black, J. A., & Waxman, S. G. (1998). SNS Na + channel expression increases in dorsal root ganglion neurons in the carrageenan inflammatory pain model. NeuroReport, 9, 967–972.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y. Q., & Chen, J. (2005). Activation of spinal extracellular signaling-regulated kinases by intraplantar melittin injection. Neuroscience Letters, 381, 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y. Q., Zhao, F., Guan, S. M., & Chen, J. (2011). Antisense-mediated knockdown of NaV1.8, but not NaV1.9, generates inhibitory effects on complete Freund’s adjuvant-induced inflammatory pain in rat. PLoS ONE, 6, e19865.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the National Natural Science Foundation of China (81070899, 81171049 and 31100803) and 973 program (2011CB504100).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Additional information

Yao-Qing Yu and Zhen-Yu Zhao equally contributed to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12017_2012_8211_MOESM1_ESM.tif

Supplementary Figure 1 Action potential firings induced by melittin and electrical stimuli maintained in the presence of high concentration of TTX. (A) Application of melittin (1 μM, 50 s) to a DRG neuron produced slow membrane depolarization and tonic action potential firing lasting for about 500 s. Although administration of 500 nM TTX could suppress the response of action potentials, the tonic firings maintained in one DRG neuron. (B) Different current injections (intensity, 200, 400 and 500 pA; duration, 3 ms and 500 ms with a 200 ms interpulse at the holding potential) produced increased firings of action potential in one DRG neuron and the electrical-evoked responses remained in the presence of 500 nM TTX. Dotted line indicated the resting membrane potential of the DRG neuron (TIFF 1603 kb)

12017_2012_8211_MOESM2_ESM.tif

Supplementary Figure 2 Melittin treatment increased action potential firings and the inhibitory effects of specific antisense oligodeoxynucleotides (AS ODNs). (A) After melittin treatment, action potential firings induced by current injection (intensity, 500 pA; duration, 500 ms) were significantly increased (n=13-15). (B) Compared with MM ODN, the melittin-enhanced neuronal firings were inhibited by NaV1.8 or NaV1.9 AS ODN (n=7-9). AS, antisense. MM, mismatch. ODN, oligodeoxynucleotide. *p<0.05; **p<0.01 vs. control (TIFF 765 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, YQ., Zhao, ZY., Chen, XF. et al. Activation of Tetrodotoxin-Resistant Sodium Channel NaV1.9 in Rat Primary Sensory Neurons Contributes to Melittin-Induced Pain Behavior. Neuromol Med 15, 209–217 (2013). https://doi.org/10.1007/s12017-012-8211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-012-8211-0

Keywords

Navigation