Skip to main content
Log in

Altered Hippocampal Synaptic Physiology in Aged Parkin-Deficient Mice

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

We examined synaptic function in the hippocampus of aged mice deficient for the Parkinson’s disease-linked protein, parkin. Surprisingly, heterozygous but not homozygous parkin-deficient mice exhibited impairments in basal excitatory synaptic strength. Similarly heterozygous mice exhibited broad deficits in paired-pulse facilitation, while homozygous parkin-deficient mice exhibited more restricted deficits. In contrast to the measurements of basal synaptic function, synaptic plasticity was not altered in aged heterozygous parkin-deficient mice, but was enhanced in aged homozygous parkin-deficient mice, due to an absence of age-related decline. These findings of differential synaptic phenotypes in heterozygous vs. homozygous parkin deficiency suggest compensatory responses to genetic abnormalities could play an important role during the development of pathology in response to parkin deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almaguer-Melian, W., et al. (2000). Synaptic plasticity is impaired in rats with a low glutathione content. Synapse, 38, 369–374.

    Article  CAS  PubMed  Google Scholar 

  • Bruck, A., et al. (2004). Hippocampal and prefrontal atrophy in patients with early non-demented Parkinson’s disease is related to cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry, 75, 1467–1469.

    Article  CAS  Google Scholar 

  • Camicioli, R., et al. (2003). Parkinson’s disease is associated with hippocampal atrophy. Movement Disorders, 18, 784–790.

    Article  PubMed  Google Scholar 

  • Chung, K. K., et al. (2001). Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: Implications for Lewy-body formation in Parkinson disease. Nature Medicine, 7, 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  • Fallon, L., et al. (2002). Parkin and CASK/LIN-2 associate via a PDZ-mediated interaction and are co-localized in lipid rafts and postsynaptic densities in brain. Journal of Biological Chemistry, 277, 486–491.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M. S., et al. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. Journal of Biological Chemistry, 278, 43628–43635.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M. S., et al. (2005). Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 45, 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Greenamyre, J. T., & Hastings, T. G. (2004). Biomedicine. Parkinson’s—divergent causes, convergent mechanisms. Science, 304, 1120–1122.

    Article  CAS  PubMed  Google Scholar 

  • Helton, T. D., et al. (2008). Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proceedings of the National Academy of Sciences USA, 105, 19492–19497.

    Article  CAS  Google Scholar 

  • Horowitz, J. M., et al. (1999). Identification and distribution of Parkin in rat brain. Neuroreport, 10, 3393–3397.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, D. P., et al. (2003). The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Human Molecular Genetics, 12, 2587–2597.

    Article  CAS  PubMed  Google Scholar 

  • Ibarretxe-Bilbao, N., et al. (2008). Hippocampal head atrophy predominance in Parkinson’s disease with hallucinations and with dementia. Journal of Neurology, 255, 1324–1331.

    Article  PubMed  Google Scholar 

  • Itier, J. M., et al. (2003). Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Human Molecular Genetics, 12, 2277–2291.

    Article  CAS  PubMed  Google Scholar 

  • Joch, M., et al. (2007). Parkin-mediated monoubiquitination of the PDZ protein PICK1 regulates the activity of acid-sensing ion channels. Molecular Biology of the Cell, 18, 3105–3118.

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., et al. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., et al. (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proceedings of the National Academy of Sciences USA, 104, 11441–11446.

    Article  CAS  Google Scholar 

  • Kitada, T., et al. (2009). Impaired dopamine release and synaptic plasticity in the striatum of parkin−/− mice. Journal of Neurochemistry, 110, 613–621.

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer, A. C., & Malenka, R. C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature, 445, 643–647.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M. J., et al. (2009). Genotype-phenotype correlates in Taiwanese patients with early-onset recessive Parkinsonism. Movement Disorders, 24, 104–108.

    Article  PubMed  Google Scholar 

  • Lohmann, E., et al. (2009). A multidisciplinary study of patients with early-onset PD with and without parkin mutations. Neurology, 72, 110–116.

    Article  CAS  PubMed  Google Scholar 

  • Palacino, J. J., et al. (2004). Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. Journal of Biological Chemistry, 279, 18614–18622.

    Article  CAS  PubMed  Google Scholar 

  • Perez, F. A., & Palmiter, R. D. (2005). Parkin-deficient mice are not a robust model of parkinsonism. Proceedings of the National Academy of Sciences USA, 102, 2174–2179.

    Article  CAS  Google Scholar 

  • Picconi, B., et al. (2005). Pathological synaptic plasticity in the striatum: Implications for Parkinson’s disease. Neurotoxicology, 26, 779–783.

    Article  CAS  PubMed  Google Scholar 

  • Prescott, I. A., et al. (2009). Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain, 132, 309–318.

    Article  CAS  PubMed  Google Scholar 

  • Riekkinen, P., Jr., et al. (1998). Hippocampal atrophy is related to impaired memory, but not frontal functions in non-demented Parkinson’s disease patients. Neuroreport, 9, 1507–1511.

    Article  PubMed  Google Scholar 

  • Rodriguez-Navarro, J. A., et al. (2007). Mortality, oxidative stress and tau accumulation during ageing in parkin null mice. Journal of Neurochemistry, 103, 98–114.

    CAS  PubMed  Google Scholar 

  • Shimura, H., et al. (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: Implications for Parkinson’s disease. Science, 293, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Stichel, C. C., et al. (2000). Parkin expression in the adult mouse brain. European Journal of Neuroscience, 12, 4181–4194.

    CAS  PubMed  Google Scholar 

  • van Nuenen, B. F., et al. (2009). Heterozygous carriers of a Parkin or PINK1 mutation share a common functional endophenotype. Neurology, 72, 1041–1047.

    Article  PubMed  Google Scholar 

  • Von Coelln, R., et al. (2004). Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proceedings of the National Academy of Sciences USA, 101, 10744–10749.

    Article  Google Scholar 

  • Wang, Y., et al. (2008). DJ-1 is essential for long-term depression at hippocampal CA1 synapses. Neuromolecular Medicine, 10, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. B., et al. (2002). Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: Coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II. Journal of Neuroscience Research, 70, 298–308.

    Article  CAS  PubMed  Google Scholar 

  • Watson, J. B., et al. (2006). Age-dependent modulation of hippocampal long-term potentiation by antioxidant enzymes. Journal of Neuroscience Research, 84, 1564–1574.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., et al. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proceedings of the National Academy of Sciences USA, 97, 13354–13359.

    Article  CAS  Google Scholar 

  • Zhu, X. R., et al. (2007). Non-motor behavioural impairments in parkin-deficient mice. European Journal of Neuroscience, 26, 1902–1911.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Richard Palmiter for providing breeding pairs of parkin-deficient mice. This work was supported by Grants from the National Institute of Mental Health (MH065541) and by The G. Harold and Leila Y. Mathers Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse E. Hanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, J.E., Orr, A.L. & Madison, D.V. Altered Hippocampal Synaptic Physiology in Aged Parkin-Deficient Mice. Neuromol Med 12, 270–276 (2010). https://doi.org/10.1007/s12017-010-8113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-010-8113-y

Keywords

Navigation