Skip to main content
Log in

Osteoporosis and Primary Biliary Cholangitis: A Trans-ethnic Mendelian Randomization Analysis

  • Review
  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Osteoporosis is a major clinical problem in many autoimmune diseases, including primary biliary cholangitis (PBC), the most common autoimmune liver disease. Osteoporosis is a major cause of fracture and related mortality. However, it remains unclear whether PBC confers a causally risk-increasing effect on osteoporosis. Herein, we aimed to investigate the causal relationship between PBC and osteoporosis and whether the relationship is independent of potential confounders. We performed bidirectional Mendelian randomization (MR) analyses to investigate the association between PBC (8021 cases and 16,489 controls) and osteoporosis in Europeans (the UK Biobank and FinnGen Consortium: 12,787 cases and 726,996 controls). The direct effect of PBC on osteoporosis was estimated using multivariable MR analyses. An independent replication was conducted in East Asians (PBC: 2495 cases and 4283 controls; osteoporosis: 9794 cases and 168,932 controls). Trans-ethnic meta-analysis was performed by pooling the MR estimates of Europeans and East Asians. Inverse-variance weighted analyses revealed that genetic liability to PBC was associated with a higher risk of osteoporosis in Europeans (OR, 1.040; 95% CI, 1.016–1.064; P = 0.001). Furthermore, the causal effect of PBC on osteoporosis persisted after adjusting for BMI, calcium, lipidemic traits, and sex hormones. The causal relationship was further validated in the East Asians (OR, 1.059; 95% CI, 1.023–1.096; P = 0.001). Trans-ethnic meta-analysis confirmed that PBC conferred increased risk on osteoporosis (OR, 1.045; 95% CI, 1.025–1.067; P = 8.17 × 10−6). Our data supports a causal effect of PBC on osteoporosis, and the causality is independent of BMI, calcium, triglycerides, and several sex hormones.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

See Table S1.

Abbreviations

BMI:

Body mass index

BAT:

Bioavailable testosterone

CAUSE:

Causal analysis using summary effect estimates

CI:

Confidence interval

GWAS:

Genome-wide association study

IV:

Instrumental variable

IVW:

Inverse variance weighted

LDSC:

Linkage disequilibrium score regression

MR:

Mendelian randomization

MVMR:

Multivariable Mendelian randomization

OR:

Odds ratio

PBC:

Primary biliary cholangitis

PRESSO:

Pleiotropy residual sum and outlier

SHBG:

Sex hormone binding globulin

SNP:

Single nucleotide polymorphism

TT:

Total testosterone

TG:

Triglycerides

References

  1. EASL Clinical Practice Guidelines (2017) the diagnosis and management of patients with primary biliary cholangitis. J Hepatol 67(1):145–172

    Article  Google Scholar 

  2. Hirschfield GM, Gershwin ME (2013) The immunobiology and pathophysiology of primary biliary cirrhosis. Annu Rev Pathol 8:303–330

    Article  CAS  PubMed  Google Scholar 

  3. Lleo A et al (2020) Primary biliary cholangitis. Lancet 396(10266):1915–1926

    Article  CAS  PubMed  Google Scholar 

  4. Trivedi PJ, Hirschfield GM (2021) Recent advances in clinical practice: epidemiology of autoimmune liver diseases. Gut 70(10):1989–2003

    Article  PubMed  Google Scholar 

  5. Zeng N et al (2019) Epidemiology and clinical course of primary biliary cholangitis in the Asia-Pacific region: a systematic review and meta-analysis. Hepatol Int 13(6):788–799

    Article  PubMed  Google Scholar 

  6. Parés A, Guañabens N (2018) Primary biliary cholangitis and bone disease. Best Pract Res Clin Gastroenterol 34–35:63–70

    Article  PubMed  Google Scholar 

  7. Chen JL et al (2023) Prevalence and risk factors of osteoporosis detected by dual-energy X-ray absorptiometry among Chinese patients with primary biliary cholangitis. World J Gastroenterol 29(29):4580–4592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liao CY et al (2018) Increased risk of osteoporosis in patients with primary biliary cirrhosis. PLoS ONE 13(3):e0194418

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schmidt T et al (2018) Disease duration and stage influence bone microstructure in patients with primary biliary cholangitis. J Bone Miner Res 33(6):1011–1019

    Article  CAS  PubMed  Google Scholar 

  10. Guañabens N et al (2005) Severity of cholestasis and advanced histological stage but not menopausal status are the major risk factors for osteoporosis in primary biliary cirrhosis. J Hepatol 42(4):573–577

    Article  PubMed  Google Scholar 

  11. Guañabens N et al (2010) Low bone mass and severity of cholestasis affect fracture risk in patients with primary biliary cirrhosis. Gastroenterology 138(7):2348–2356

    Article  PubMed  Google Scholar 

  12. Schönau J et al (2023) Risk of fractures and postfracture mortality in 3980 people with primary biliary cholangitis: a population-based cohort study. J Intern Med 294(2):164–177

    Article  PubMed  Google Scholar 

  13. Curry SJ et al (2018) Screening for osteoporosis to prevent fractures: US Preventive Services Task Force Recommendation Statement. JAMA 319(24):2521–2531

    Article  PubMed  Google Scholar 

  14. Pouresmaeili F et al (2018) A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 14:2029–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cosman F et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25(10):2359–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Danford CJ et al (2020) The Pharmacologic management of osteoporosis in primary biliary cholangitis: a systematic review and meta-analysis. J Clin Densitom 23(2):223–236

    Article  PubMed  Google Scholar 

  17. Boonstra K, Beuers U, Ponsioen CY (2012) Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: a systematic review. J Hepatol 56(5):1181–1188

    Article  PubMed  Google Scholar 

  18. Estrada K et al (2012) Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet 44(5):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roshandel D et al (2010) Genetic variation in the RANKL/RANK/OPG signaling pathway is associated with bone turnover and bone mineral density in men. J Bone Miner Res 25(8):1830–1838

    Article  CAS  PubMed  Google Scholar 

  20. Juran BD et al (2012) Immunochip analyses identify a novel risk locus for primary biliary cirrhosis at 13q14, multiple independent associations at four established risk loci and epistasis between 1p31 and 7q32 risk variants. Hum Mol Genet 21(23):5209–5221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tang R et al (2016) A common variant in CLDN14 is associated with primary biliary cirrhosis and bone mineral density. Sci Rep 6:19877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu S et al (2023) The causal relationship between autoimmune diseases and osteoporosis: a study based on Mendelian randomization. Front Endocrinol (Lausanne) 14:1196269

    Article  PubMed  Google Scholar 

  23. Davey Smith G, Hemani G (2014) Hemani, Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet 23(R1):89–98

    Article  Google Scholar 

  24. Skrivankova VW et al (2021) Strengthening the reporting of observational studies in epidemiology using mendelian randomisation (STROBE-MR): explanation and elaboration. BMJ 375:n2233

    Article  PubMed  PubMed Central  Google Scholar 

  25. Emdin CA, Khera AV, Kathiresan S (2017) Mendelian randomization. JAMA 318(19):1925–1926

    Article  PubMed  Google Scholar 

  26. Cordell HJ et al (2021) An international genome-wide meta-analysis of primary biliary cholangitis: novel risk loci and candidate drugs. J Hepatol 75(3):572–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou W et al (2018) Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat Genet 50(9):1335–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakaue S et al (2021) A cross-population atlas of genetic associations for 220 human phenotypes. Nat Genet 53(10):1415–1424

    Article  CAS  PubMed  Google Scholar 

  29. Lam M et al (2020) RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics 36(3):930–933

    Article  CAS  PubMed  Google Scholar 

  30. Watanabe K et al (2017) Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8(1):1826

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pulit SL et al (2019) Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28(1):166–174

    Article  CAS  PubMed  Google Scholar 

  32. Revez JA et al (2020) Genome-wide association study identifies 143 loci associated with 25 hydroxyvitamin D concentration. Nat Commun 11(1):1647

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mbatchou J et al (2021) Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet 53(7):1097–1103

    Article  CAS  PubMed  Google Scholar 

  34. Graham SE et al (2021) The power of genetic diversity in genome-wide association studies of lipids. Nature 600(7890):675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmitz D et al (2021) Genome-wide association study of estradiol levels and the causal effect of estradiol on bone mineral density. J Clin Endocrinol Metab 106(11):e4471–e4486

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ruth KS et al (2020) Using human genetics to understand the disease impacts of testosterone in men and women. Nat Med 26(2):252–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burgess S, Davies NM, Thompson SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol 40(7):597–608

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bulik-Sullivan BK et al (2015) LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47(3):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mounier N, Kutalik Z (2023) Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol 47(4):314–331

    Article  CAS  PubMed  Google Scholar 

  40. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. Bmj 362:k601

  41. Hemani G, Tilling K, Davey Smith G (2017) Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet 13(11):e1007081

  42. Staley JR et al (2016) PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 32(20):3207–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamat MA et al (2019) PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 35(22):4851–4853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bowden J et al (2017) A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med 36(11):1783–1802

    Article  PubMed  PubMed Central  Google Scholar 

  45. Palmer TM et al (2011) Instrumental variable estimation of causal risk ratios and causal odds ratios in Mendelian randomization analyses. Am J Epidemiol 173(12):1392–1403

    Article  PubMed  Google Scholar 

  46. Sanderson E (2021) Multivariable Mendelian Randomization and mediation. Cold Spring Harb Perspect Med 11(2)

  47. Bowden J et al (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–25

    Article  PubMed  PubMed Central  Google Scholar 

  49. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

    Article  PubMed  PubMed Central  Google Scholar 

  50. Verbanck M et al (2018) Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet 50(5):693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morrison J et al (2020) Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet 52(7):740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558

    Article  PubMed  Google Scholar 

  53. Burgess S et al (2019) Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res 4:186

    Article  PubMed  Google Scholar 

  54. Bowden J et al (2018) Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and radial regression. Int J Epidemiol 47(4):1264–1278

    Article  PubMed  PubMed Central  Google Scholar 

  55. Raszeja-Wyszomirska J, Miazgowski T (2014) Osteoporosis in primary biliary cirrhosis of the liver. Prz Gastroenterol 9(2):82–87

    PubMed  PubMed Central  Google Scholar 

  56. Imamudeen N et al (2022) Management of osteoporosis and spinal fractures: contemporary guidelines and evolving paradigms. Clin Med Res 20(2):95–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trivedi HD et al (2020) Osteoporosis in primary biliary cholangitis: prevalence, impact and management challenges. Clin Exp Gastroenterol 13:17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ruiz-Gaspà S et al (2011) Effects of bilirubin and sera from jaundiced patients on osteoblasts: contribution to the development of osteoporosis in liver diseases. Hepatology 54(6):2104–2113

    Article  PubMed  Google Scholar 

  59. Kitaura H et al (2020) Osteocyte-Related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci 21(14)

  60. Chen X et al (2023) Vitamin D status and its associations with bone mineral density, bone turnover markers, and parathyroid hormone in Chinese postmenopausal women with osteopenia and osteoporosis. Front Nutr 10:1307896

    Article  PubMed  Google Scholar 

  61. Adejuyigbe B et al (2023) Osteoporosis: molecular pathology, diagnostics, and therapeutics. Int J Mol Sci 24(19)

  62. Stokes CS et al (2013) Vitamin D in chronic liver disease. Liver Int 33(3):338–352

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all of the investigators participants for sharing genetic association estimates for PBC and osteoporosis. We acknowledge the use of Biorender to create graphic abstract and Fig. 1.

Funding

This study was funded by the National Natural Science Foundation of China grants (#82270554 and 81922010 to RT; #81830016 and 82130017 to XM) and Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 20XD1422500 to RT). The funding source was not involved in study design, analysis, and interpretation of the data.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Tang and Dr. Ma had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: Ruqi Tang, Xiong Ma, Zhiqiang Li, and M. Eric Gershwin. Acquisition, analysis, or interpretation of data: Yi Wu, Qiwei Qian, Minoru Nakamura, Qiaoyan Liu, Rui Wang, Xiting Pu, Yao Li, and Huayang Zhang. Drafting of the manuscript: Yi Wu and Qiwei Qian. Critical review of the manuscript for important intellectual content: Ruqi Tang, Xiong Ma, Zhiqiang Li, and M. Eric Gershwin. Statistical analysis: Yi Wu, Qiwei Qian, and Zhiqiang Li. Obtained funding: Xiong Ma and Ruqi Tang. Administrative, technical, or material support: Zhengrui You, Qi Miao, Xiao Xiao, Min Lian, and Qixia Wang. Supervision: Ruqi Tang and Xiong Ma.

Corresponding authors

Correspondence to Zhiqiang Li, Xiong Ma or Ruqi Tang.

Ethics declarations

Ethical Approval

Ethical approval and participant consent to participate, originally obtained in these patient cohorts, were not required here.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 549 KB)

Supplementary file2 (XLSX 219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Qian, Q., Liu, Q. et al. Osteoporosis and Primary Biliary Cholangitis: A Trans-ethnic Mendelian Randomization Analysis. Clinic Rev Allerg Immunol (2024). https://doi.org/10.1007/s12016-024-08986-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12016-024-08986-4

Keywords

Navigation