Skip to main content

Advertisement

Log in

New Strategies in the Management of Guillain–Barré Syndrome

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Guillain–Barré syndrome (GBS) is an acute and usually monophasic, neurological, demyelinating disease. Although most patients have good outcomes without sequelae after conventional plasma exchange and intravenous immunoglobulin therapy, 20 % of patients continue to have severe disease and 5 % die of their disease. Therefore, there is an obvious need for more acceptable and efficacious therapies. Experimental autoimmune neuritis (EAN) is the classical animal model for GBS. As there is no specific drug for GBS, several drugs targeting the humoral and cellular components of the immune response have been used to treat EAN in the endeavour to find new treatment alternatives for GBS. This review focused on some new strategies for GBS, which have been reported but have not yet been widely used, and on the main drugs which have been investigated in EAN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Orlikowski D, Porcher R, Sivadon-Tardy V, Quincampoix JC, Raphael JC, Durand MC et al (2011) Guillain–Barré syndrome following primary cytomegalovirus infection: a prospective cohort study. Clin Infect Dis 52:837–844

    PubMed  Google Scholar 

  2. Uncini A, Kuwabara S (2012) Electrodiagnostic criteria for Guillain–Barré syndrome: a critical revision and the need for an update. Clin Neurophysiol 123:1487–1495

    PubMed  Google Scholar 

  3. Mukerji S, Aloka F, Farooq MU, Kassab MY, Abela GS (2009) Cardiovascular complications of the Guillain–Barré syndrome. Am J Cardiol 104:1452–1455

    PubMed  Google Scholar 

  4. Yuki N, Hartung HP (2012) Guillain–Barré syndrome. N Engl J Med 366:2294–2304

    CAS  PubMed  Google Scholar 

  5. van Koningsveld R, Schmitz PI, Meche FG, Visser LH, Meulstee J, van Doorn PA (2004) Effect of methylprednisolone when added to standard treatment with intravenous immunoglobulin for Guillain–Barré syndrome: randomised trial. Lancet 363:192–196

    PubMed  Google Scholar 

  6. Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group (1997) Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain–Barré syndrome. Lancet 349:225–230

    Google Scholar 

  7. Hughes RA, Swan AV, van Doorn PA (2012) Intravenous immunoglobulin for Guillain–Barré syndrome. Cochrane Database Syst Rev 7, CD002063

  8. Cornblath DR, Hughes RA (2009) Treatment for Guillain–Barré syndrome. Ann Neurol 66:569–570

    PubMed  Google Scholar 

  9. Hughes RA, Lunn MP (2012) Neuromuscular disease: IVIg for neuromuscular disease-effective but expensive. Nat Rev Neurol 8:303–305

    CAS  PubMed  Google Scholar 

  10. Raphael JC, Chevret S, Hughes RA, Annane D (2012) Plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev 7, CD001798

  11. Gwathmey K, Balogun RA, Burns T (2012) Neurologic indications for therapeutic plasma exchange: 2011 update. J Clin Apher 27:138–145

    PubMed  Google Scholar 

  12. Hughes RA, Swan AV, van Doorn, PA (2010).Corticosteroids for Guillain–Barré syndrome. Cochrane Database Syst Rev, CD001446

  13. Hughes RA, van Doorn PA (2012) Corticosteroids for Guillain–Barré syndrome. Cochrane Database Syst Rev 8, CD001446

  14. Creange A, Lerat H, Meyrignac C, Degos JD, Gherardi RK, Cesaro P (1998) Treatment of Guillain–Barré syndrome with interferon-beta. Lancet 352:368–369

    CAS  PubMed  Google Scholar 

  15. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    CAS  PubMed  Google Scholar 

  16. Schaller B, Radziwill AJ, Steck AJ (2001) Successful treatment of Guillain–Barré syndrome with combined administration of interferon-beta-1a and intravenous immunoglobulin. Eur Neurol 46:167–168

    CAS  PubMed  Google Scholar 

  17. Pritchard J, Gray IA, Idrissova ZR, Lecky BR, Sutton IJ, Swan AV et al (2003) A randomized controlled trial of recombinant interferon-beta 1a in Guillain–Barré syndrome. Neurology 61:1282–1284

    CAS  PubMed  Google Scholar 

  18. Odaka M (2008) CSF filtration and interferon-beta for Guillain–Barré syndrome. Nippon Rinsho 66:1200–1204

    PubMed  Google Scholar 

  19. Hughes RA, Pritchard J, Hadden RD (2011) Pharmacological treatment other than corticosteroids, intravenous immunoglobulin and plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev, CD008630.

  20. Mangano K, Dati G, Quattrocchi C, Proietti L, Mazzarino C, Di Marco R et al (2008) Preventive and curative effects of cyclophosphamide in an animal model of Guillain–Barré syndrome. J Neuroimmunol 196:107–115

    CAS  PubMed  Google Scholar 

  21. Korn-Lubetzki I, Abramsky O (1986) Acute and chronic demyelinating inflammatory polyradiculoneuropathy. Association with autoimmune diseases and lymphocyte response to human neuritogenic protein. Arch Neurol 43:604–608

    CAS  PubMed  Google Scholar 

  22. Santiago-Casas Y, Peredo R, Vila L (2013) Efficacy of low-dose intravenous cyclophosphamide in systemic lupus erythematosus presenting with Guillain–Barré syndrome-like acute axonal neuropathies: report of two cases. Lupus 22:324–327

    CAS  PubMed  Google Scholar 

  23. van Laarhoven HW, Rooyer FA, van Engelen BG, van Dalen R, Berden JH (2001) Guillain–Barré syndrome as presenting feature in a patient with lupus nephritis, with complete resolution after cyclophosphamide treatment. Nephrol Dial Transplant 16:840–842

    PubMed  Google Scholar 

  24. Zandman-Goddard G, Shoenfeld Y (2005) Mycophenolate mofetil in animal models of autoimmune disease. Lupus 14(Suppl 1):s12–s16

    CAS  PubMed  Google Scholar 

  25. Janssen SP, Phernambucq M, Martinez-Martinez P, De Baets MH, Losen M (2008) Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. J Neuroimmunol 201–202:111–120

    PubMed  Google Scholar 

  26. Garssen MP, van Koningsveld R, van Doorn PA, Merkies IS, Scheltens-de Boer M, van Leusden JA et al (2007) Treatment of Guillain–Barré syndrome with mycophenolate mofetil: a pilot study. J Neurol Neurosurg Psychiatry 78:1012–1013

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Hughes RA, Pritchard J, Hadden RD (2013) Pharmacological treatment other than corticosteroids, intravenous immunoglobulin and plasma exchange for Guillain–Barré syndrome. Cochrane Database Syst Rev 2, CD008630

  28. Daleboudt GM, Reinders ME, den Hartigh J, Huizinga TW, Rabelink AJ, de Fijter JW et al (2013) Concentration-controlled treatment of lupus nephritis with mycophenolate mofetil. Lupus 22:171–179

    CAS  PubMed  Google Scholar 

  29. Liu LL, Jiang Y, Wang LN, Yao L, Li ZL (2012) Efficacy and safety of mycophenolate mofetil versus cyclophosphamide for induction therapy of lupus nephritis: a meta-analysis of randomized controlled trials. Drugs 72:1521–1533

    CAS  PubMed  Google Scholar 

  30. Andrade-Ortega L, Irazoque-Palazuelos F, Munoz-Lopez S, Rosales-Don Pablo VM (2013) Efficacy and tolerability of rituximab in patients with rhupus. Reumatol Clin 9(4):201–205

    Google Scholar 

  31. Laurenti L, De Padua L, Battendieri R, Tarnani M, Sica S, Blasi MA et al (2011) Intralesional administration of rituximab for treatment of CD20 positive orbital lymphoma: safety and efficacy evaluation. Leuk Res 35:682–684

    CAS  PubMed  Google Scholar 

  32. Kieseier BC, Lehmann HC, Meyer Zu Horste G (2012) Autoimmune diseases of the peripheral nervous system. Autoimmun Rev 11:191–195

    CAS  PubMed  Google Scholar 

  33. van Vollenhoven RF (2012) Rituximab—shadow, illusion or light? Autoimmun Rev 11:563–567

    PubMed  Google Scholar 

  34. Ostronoff F, Perales MA, Stubblefield MD, Hsu KC (2008) Rituximab-responsive Guillain–Barré syndrome following allogeneic hematopoietic SCT. Bone Marrow Transplant 42:71–72

    CAS  PubMed  Google Scholar 

  35. Park JJ, Akazawa M, Ahn J, Beckman-Harned S, Lin FC, Lee K et al (2011) Acupuncture sensation during ultrasound guided acupuncture needling. Acupunct Med 29:257–265

    PubMed Central  PubMed  Google Scholar 

  36. Yan Q, Ruan JW, Ding Y, Li WJ, Li Y, Zeng YS (2011) Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxicol Pathol 63:151–156

    PubMed  Google Scholar 

  37. Huang SF, Ding Y, Ruan JW, Zhang W, Wu JL, He B et al (2011) An experimental electro-acupuncture study in treatment of the rat demyelinated spinal cord injury induced by ethidium bromide. Neurosci Res 70:294–304

    CAS  PubMed  Google Scholar 

  38. Kavoussi B, Ross BE (2007) The neuroimmune basis of anti-inflammatory acupuncture. Integr Cancer Ther 6:251–257

    CAS  PubMed  Google Scholar 

  39. Kim SK, Bae H (2010) Acupuncture and immune modulation. Auton Neurosci 157:38–41

    PubMed  Google Scholar 

  40. Jing-xi W (2010) Case report of three patients with Wei-flaccidity syndrome cured by aupuncture-moxibustion therapy. J Acupunct Tuina Sci 8:55–57

    Google Scholar 

  41. Zou H (2010) Clinical observation of 38 cases of Guillain–Barré sydrome treated by needle medicine. J Shandong Univ 221–222

  42. Lu Q, Wang H, Kang B (2010) Observations on the restoring effect of combined acupuncture and medicine on myodynamia in patients with Guillain–Barré syndrome. Shanghai J Acu-Mox 300–302

  43. Zeng S, Zhong D, Li Y (2008) Progress of acupuncture in the treatment of Guillain–Barré syndrome. Tradit Chin Med 51–52

  44. Wang H, Li M, Xiang B (2006) Clinical progress of Guillain–Barré syndrome by Chinese medicine treatment. Tradit Chin Med Jilin 75–76

  45. Yang QD, Long XY, Peng LX, Xu XP, Wang Y, Wu Y et al (2003) Tripterugium wilfordii multiglucoside-treated case of sensory perineuritis. Eur J Neurol 10:188–190

    CAS  PubMed  Google Scholar 

  46. Ji W, Li J, Lin Y, Song YN, Zhang M, Ke Y et al (2010) Report of 12 cases of ankylosing spondylitis patients treated with Tripterygium wilfordii. Clin Rheumatol 29:1067–1072

    PubMed Central  PubMed  Google Scholar 

  47. Xiong J, Wang H, Guo G, Wang S, He L, Chen H et al (2011) Male germ cell apoptosis and epigenetic histone modification induced by Tripterygium wilfordii Hook F. PLoS One 6:e20751

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Goldbach-Mansky R, Wilson M, Fleischmann R, Olsen N, Silverfield J, Kempf P et al (2009) Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial. Ann Intern Med 151(229–240):W249–W251

    Google Scholar 

  49. Liu Q, Chen T, Chen G, Li N, Wang J, Ma P et al (2006) Immunosuppressant triptolide inhibits dendritic cell-mediated chemoattraction of neutrophils and T cells through inhibiting Stat3 phosphorylation and NF-kappaB activation. Biochem Biophys Res Commun 345:1122–1130

    CAS  PubMed  Google Scholar 

  50. Zhang X, Xia J, Ye H (2000) [Effect of Tripterygium polyglycoside on interleukin-6 in patients with Guillain–Barré syndrome]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 20:332–334

  51. Zhang X, Xia J, Ye H (2001) Study of serum and CSF IL-6 and siL-2R of Guillain–Barré syndrome patients with Triterygium wilfordii. Chin J Immunol 1:53–54

    Google Scholar 

  52. Xiao B, Shao HY, Xie GJ, Li J, Yang H, Zhou WB et al (2001) Coordinating stimulus molecule in the incidence of nerve of sex of experimental allergy neuritis and the effect of glucoside Tripterygium wilfordii. Stroke and Nervous Diseases 8:67–70

    Google Scholar 

  53. Xu N, Wang Y, Huang G, Wu M, Tang H, Z W (2009) Expression of TLR9 mRNA in experimental allergic neuritis and its dependence on TWP. Sci Tech Rev 8:59–63

  54. Tang W, Zuo JP (2012) Immunosuppressant discovery from Tripterygium wilfordii Hook f: the novel triptolide analog (5R)-5-hydroxytriptolide (LLDT-8). Acta Pharmacol Sin 33:1112–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23

    CAS  PubMed  Google Scholar 

  56. Schulte-Herbruggen O, Braun A, Rochlitzer S, Jockers-Scherubl MC, Hellweg R (2007) Neurotrophic factors—a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 14:2318–2329

    CAS  PubMed  Google Scholar 

  57. Cohen S, Levi-Montalcini R, Hamburger V (1954) A nerve growth-stimulating factor isolated from Sarcom as 37 and 180. Proc Natl Acad Sci U S A 40:1014–1018

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Kramer R, Zhang Y, Gehrmann J, Gold R, Thoenen H, Wekerle H (1995) Gene transfer through the blood–nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat Med 1:1162–1166

    CAS  PubMed  Google Scholar 

  59. Liu H, Zhang B, Fang S, Teng J, Lian Y, Xu Y et al (2007) Repair role of mouse nerve growth factor to peripheral nerve in Guillain–Barré syndrome. Clin J New Drugs Clin Rem 26:3

    Google Scholar 

  60. Peng C, Shu X, Yang B, Li J (2009) Obsevation on therapeutic effects of IVIG and mNGF cure for children with Guillain–Barré syndrome. Acta Acad Med ZunYi 32:3

    Google Scholar 

  61. Chen T, Guo Q, Yang Y, Shui L (2013) Therapeutic effects of mNGF and IVIG for the children with Guillain–Barré syndrome. Med ChongQing 42:2

    Google Scholar 

  62. Xiao J, Hughes RA, Lim JY, Wong AW, Ivanusic JJ, Ferner AH et al (2013) A small peptide mimetic of brain-derived neurotrophic factor promotes peripheral myelination. J Neurochem 125:386–398

    CAS  PubMed  Google Scholar 

  63. Singh M, Su C (2013) Progesterone, brain-derived neurotrophic factor and neuroprotection. Neuroscience 239:84–91

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS et al (2008) Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med 359:918–927

    CAS  PubMed Central  PubMed  Google Scholar 

  65. DiStefano PS, Friedman B, Radziejewski C, Alexander C, Boland P, Schick CM et al (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8:983–993

    CAS  PubMed  Google Scholar 

  66. Bensa S, Hadden RD, Hahn A, Hughes RA, Willison HJ (2000) Randomized controlled trial of brain-derived neurotrophic factor in Guillain–Barré syndrome: a pilot study. Eur J Neurol 7:423–426

    CAS  PubMed  Google Scholar 

  67. Felts PA, Smith KJ, Gregson NA, Hughes RA (2002) Brain-derived neurotrophic factor in experimental autoimmune neuritis. J Neuroimmunol 124:62–69

    CAS  PubMed  Google Scholar 

  68. Druml W, Lechner M, Grimm G (1991) Guillain–Barré-syndrome (GBS) is a hypercatabolic but not hypermetabolic disease. Clin Nutr 10:57

    Google Scholar 

  69. Roubenoff RA, Borel CO, Hanley DF (1992) Hypermetabolism and hypercatabolism in Guillain–Barré syndrome. JPEN J Parenter Enter Nutr 16:464–472

    CAS  Google Scholar 

  70. Harms M (2011) Inpatient management of Guillain–Barré syndrome. Neurohospitalist 1:78–84

    PubMed Central  PubMed  Google Scholar 

  71. Leng Y, Marinova Z, Reis-Fernandes MA, Nau H, Chuang DM (2010) Potent neuroprotective effects of novel structural derivatives of valproic acid: potential roles of HDAC inhibition and HSP70 induction. Neurosci Lett 476:127–132

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q (2011) Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res 1396:60–68

    CAS  PubMed  Google Scholar 

  73. Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) Valproic acid attenuates inflammation in experimental autoimmune neuritis. Cell Mol Life Sci 65:4055–4065

    CAS  PubMed  Google Scholar 

  74. Yi C, Zhang Z, Wang W, Zug C, Schluesener HJ (2011) Doxycycline attenuates peripheral inflammation in rat experimental autoimmune neuritis. Neurochem Res 36:1984–1990

    CAS  PubMed  Google Scholar 

  75. Lin T (2005) Effective prevention and treatment of experimental autoimmune neuritis with rapamycin. J Neurol Sci 238:S190

    Google Scholar 

  76. Ramkalawan H, Wang YZ, Hurbungs A, Yang YF, Tian FF, Zhou WB et al (2012) Pioglitazone, PPARgamma agonist, attenuates experimental autoimmune neuritis. Inflammation 35:1338–1347

    CAS  PubMed  Google Scholar 

  77. Taylor JM, Pollard JD (2007) Soluble TNFR1 inhibits the development of experimental autoimmune neuritis by modulating blood–nerve-barrier permeability and inflammation. J Neuroimmunol 183:118–124

    CAS  PubMed  Google Scholar 

  78. Tan XD, Dou YC, Shi CW, Duan RS, Sun RP (2009) Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 207:39–44

    CAS  PubMed  Google Scholar 

  79. Castro FR, Farias AS, Proenca PL, de La Hoz C, Langone F, Oliveira EC et al (2007) The effect of treatment with crotapotin on the evolution of experimental autoimmune neuritis induced in Lewis rats. Toxicon 49:299–305

    CAS  PubMed  Google Scholar 

  80. Zhang ZY, Zhang Z, Schluesener HJ (2010) MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 169:370–377

    CAS  PubMed  Google Scholar 

  81. Miyamoto K, Oka N, Kawasaki T, Miyake S, Yamamura T, Akiguchi I (2002) New cyclooxygenase-2 inhibitors for treatment of experimental autoimmune neuritis. Muscle Nerve 25:280–282

    CAS  PubMed  Google Scholar 

  82. Zhang Z, Zhang ZY, Schluesener HJ (2009) Compound A, a plant origin ligand of glucocorticoid receptors, increases regulatory T cells and M2 macrophages to attenuate experimental autoimmune neuritis with reduced side effects. J Immunol 183:3081–3091

    CAS  PubMed  Google Scholar 

  83. van der Most PJ, Dolga AM, Nijholt IM, Luiten PG, Eisel UL (2009) Statins: mechanisms of neuroprotection. Prog Neurobiol 88:64–75

    PubMed  Google Scholar 

  84. Bu DX, Griffin G, Lichtman AH (2011) Mechanisms for the anti-inflammatory effects of statins. Curr Opin Lipidol 22:165–170

    CAS  PubMed  Google Scholar 

  85. Castilla Guerra L, del Carmen Fernandez Moreno M, Lopez Chozas JM, Jimenez Hernandez MD (2008) Statins in stroke prevention: what an internist should know. Eur J Intern Med 19:8–14

    CAS  PubMed  Google Scholar 

  86. Orr JD (2008) Statins in the spectrum of neurologic disease. Curr Atheroscler Rep 10:11–18

    CAS  PubMed  Google Scholar 

  87. Sarkey JP, Richards MP, Stubbs EB Jr (2007) Lovastatin attenuates nerve injury in an animal model of Guillain–Barré syndrome. J Neurochem 100:1265–1277

    CAS  PubMed  Google Scholar 

  88. Li XL, Dou YC, Liu Y, Shi CW, Cao LL, Zhang XQ et al (2011) Atorvastatin ameliorates experimental autoimmune neuritis by decreased Th1/Th17 cytokines and up-regulated T regulatory cells. Cell Immunol 271:455–461

    CAS  PubMed  Google Scholar 

  89. Li X, Gonias SL, Campana WM (2005) Schwann cells express erythropoietin receptor and represent a major target for Epo in peripheral nerve injury. Glia 51:254–265

    PubMed  Google Scholar 

  90. Subiros N, Del Barco DG, Coro-Antich RM (2012) Erythropoietin: still on the neuroprotection road. Ther Adv Neurol Disord 5:161–173

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Fisher M (2011) New approaches to neuroprotective drug development. Stroke 42:S24–S27

    PubMed  Google Scholar 

  92. Ehrenreich H, Fischer B, Norra C, Schellenberger F, Stender N, Stiefel M et al (2007) Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 130:2577–2588

    PubMed  Google Scholar 

  93. Ahn M, Moon C, Jeong C, Matsumoto Y, Koh CS, Shin T (2010) Upregulation of erythropoietin in rat peripheral nervous system with experimental autoimmune neuritis. Brain Res 1333:82–90

    CAS  PubMed  Google Scholar 

  94. Mausberg AK, Meyer Zu Horste G, Dehmel T, Stettner M, Lehmann HC, Sheikh KA et al (2011) Erythropoietin ameliorates rat experimental autoimmune neuritis by inducing transforming growth factor-beta in macrophages. PLoS One 6:e26280

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Bowerman M, Murray LM, Boyer JG, Anderson CL, Kothary R (2012) Fasudil improves survival and promotes skeletal muscle development in a mouse model of spinal muscular atrophy. BMC Med 10:24

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Ikemura S, Yamamoto T, Motomura G, Yamaguchi R, Zhao G, Iwasaki K et al (2013) Preventive effects of the anti-vasospasm agent via the regulation of the Rho-kinase pathway on the development of steroid-induced osteonecrosis in rabbits. Bone 53:329–335

    CAS  PubMed  Google Scholar 

  97. Pineda A, Kira j, Minohara M (2005) The effect of rho-kinase inhibitor fasudil in the clinical course of EAN (experimental autoimmune neuritis). J Neurol Sci 238:273

    Google Scholar 

  98. Pineda AA, Minohara M, Kawamura N, Matsushita T, Yamasaki R, Sun X et al (2011) Preventive and therapeutic effects of the selective rho-kinase inhibitor fasudil on experimental autoimmune neuritis. J Neurol Sci 306:115–120

    CAS  PubMed  Google Scholar 

  99. Zhang ZY, Zhang Z, Zug C, Nuesslein-Hildesheim B, Leppert D, Schluesener HJ (2009) AUY954, a selective S1P(1) modulator, prevents experimental autoimmune neuritis. J Neuroimmunol 216:59–65

    CAS  PubMed  Google Scholar 

  100. Zhang ZY, Zhang Z, Schluesener HJ (2009) FTY720 attenuates lesional interleukin-17(+) cell accumulation in rat experimental autoimmune neuritis. Neuropathol Appl Neurobiol 35:487–495

    CAS  PubMed  Google Scholar 

  101. Zhang Z, Zhang ZY, Fauser U, Schluesener HJ (2008) FTY720 ameliorates experimental autoimmune neuritis by inhibition of lymphocyte and monocyte infiltration into peripheral nerves. Exp Neurol 210:681–690

    CAS  PubMed  Google Scholar 

  102. Korn T, Toyka K, Hartung HP, Jung S (2001) Suppression of experimental autoimmune neuritis by leflunomide. Brain 124:1791–1802

    CAS  PubMed  Google Scholar 

  103. Zou LP, Abbas N, Volkmann I, Nennesmo I, Levi M, Wahren B et al (2002) Suppression of experimental autoimmune neuritis by ABR-215062 is associated with altered Th1/Th2 balance and inhibited migration of inflammatory cells into the peripheral nerve tissue. Neuropharmacology 42:731–739

    CAS  PubMed  Google Scholar 

  104. Kafri M, Kloog Y, Korczyn AD, Ferdman-Aronovich R, Drory V, Katzav A et al (2005) Inhibition of Ras attenuates the course of experimental autoimmune neuritis. J Neuroimmunol 168:46–55

    CAS  PubMed  Google Scholar 

  105. Zhang HL, Mao XJ, Zhang XM, Li HF, Zheng XY, Adem A et al (2011) APOE epsilon3 attenuates experimental autoimmune neuritis by modulating T cell, macrophage and Schwann cell functions. Exp Neurol 230:197–206

    CAS  PubMed  Google Scholar 

  106. Zou LP, Deretzi G, Pelidou SH, Levi M, Wahren B, Quiding C et al (2000) Rolipram suppresses experimental autoimmune neuritis and prevents relapses in Lewis rats. Neuropharmacology 39:324–333

    CAS  PubMed  Google Scholar 

  107. Karpati T, Karussis D, Abramsky O, Mizrahi-Koll R, Arbell I, Ovadia H (1998) Inhibition of experimental autoimmune neuritis by the immunomodulator linomide. Immunol Lett 63:141–145

    CAS  PubMed  Google Scholar 

  108. Aronovich R, Katzav A, Chapman J (2012) The strategies used for treatment of experimental autoimmune neuritis (EAN): a beneficial effect of glatiramer acetate administered intraperitoneally. Clin Rev Allergy Immunol 42:181–188

    CAS  PubMed  Google Scholar 

  109. Gogishvili T, Langenhorst D, Luhder F, Elias F, Elflein K, Dennehy KM et al (2009) Rapid regulatory T-cell response prevents cytokine storm in CD28 superagonist treated mice. PLoS One 4:e4643

    PubMed Central  PubMed  Google Scholar 

  110. Schmidt J, Elflein K, Stienekemeier M, Rodriguez-Palmero M, Schneider C, Toyka KV et al (2003) Treatment and prevention of experimental autoimmune neuritis with superagonistic CD28-specific monoclonal antibodies. J Neuroimmunol 140:143–152

    CAS  PubMed  Google Scholar 

  111. Jander S, Stoll G (2001) Interleukin-18 is induced in acute inflammatory demyelinating polyneuropathy. J Neuroimmunol 114:253–258

    CAS  PubMed  Google Scholar 

  112. Yu S, Chen Z, Mix E, Zhu SW, Winblad B, Ljunggren HG et al (2002) Neutralizing antibodies to IL-18 ameliorate experimental autoimmune neuritis by counter-regulation of autoreactive Th1 responses to peripheral myelin antigen. J Neuropathol Exp Neurol 61:614–622

    CAS  PubMed  Google Scholar 

  113. Fewou SN, Rupp A, Nickolay LE, Carrick K, Greenshields KN, Pediani J et al (2012) Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy. J Clin Invest 122:1037–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Halstead SK, Zitman FM, Humphreys PD, Greenshields K, Verschuuren JJ, Jacobs BC et al (2008) Eculizumab prevents anti-ganglioside antibody-mediated neuropathy in a murine model. Brain 131:1197–1208

    PubMed  Google Scholar 

  115. Usuki S, Taguchi K, Thompson SA, Chapman PB, Yu RK (2010) Novel anti-idiotype antibody therapy for lipooligosaccharide-induced experimental autoimmune neuritis: use relevant to Guillain–Barré syndrome. J Neurosci Res 88:1651–1663

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Stienekemeier M, Falk K, Rotzschke O, Weishaupt A, Schneider C, Toyka KV et al (2001) Vaccination, prevention, and treatment of experimental autoimmune neuritis (EAN) by an oligomerized T cell epitope. Proc Natl Acad Sci U S A 98:13872–13877

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Zou LP, Zhu J, Deng GM, Levi M, Wahren B, Diab A et al (1998) Treatment with P2 protein peptide 57–81 by nasal route is effective in Lewis rat experimental autoimmune neuritis. J Neuroimmunol 85:137–145

    CAS  PubMed  Google Scholar 

  118. Zou LP, Ma DH, Levi M, Wahren B, Wei L, Mix E et al (1999) Antigen-specific immunosuppression: nasal tolerance to P0 protein peptides for the prevention and treatment of experimental autoimmune neuritis in Lewis rats. J Neuroimmunol 94:109–121

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (2013CB966900 to F.D.S), the National Natural Science Foundation of China (81100887 and 81273287 to J.W.H), the Program for New Century Excellent Talents in University of China (J.W.H), the Key Project of Natural Science Foundation of Tianjin Province (12JCZDJC24200 to J.W.H) and the Key Project of Chinese Ministry of Education (212005 to J.W.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junwei Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, J., Simard, A.R., Shi, FD. et al. New Strategies in the Management of Guillain–Barré Syndrome. Clinic Rev Allerg Immunol 47, 274–288 (2014). https://doi.org/10.1007/s12016-013-8388-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-013-8388-5

Keywords

Navigation