Skip to main content
Log in

Cutting Edge Issues in Primary Sclerosing Cholangitis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease characterized by the destruction of medium- to large-sized bile ducts and intense concentric fibrosis. Complications from PSC include bacterial cholangitis, cirrhosis, and cholangiocarcinoma and a therapy that might alter the natural history of the disease remains lacking. Our understanding of the pathogenesis of PSC also remains rudimentary but the strong association between PSC and inflammatory bowel disease suggest causal links between the diseases. The male predominance in PSC, lack of a defined, pathogenic auto-antigen, and the potential role of the innate immune system suggest that PSC may be due to dysregulation of immunity rather than a classic autoimmune disease. However, PSC shares several genetic susceptibility loci with other autoimmune diseases including the human leukocyte antigen DRB01*03 haplotype. The precise immune response of PSC is largely unknown but likely involves activation of the innate immune system by bacterial components delivered to the liver via the portal vein. Induction of adhesion molecules and chemokines leads to the recruitment of intestinal lymphocytes. Bile duct injury results from the sustained inflammation and production of inflammatory cytokines. Biliary strictures may cause further damage as a result of bile stasis and recurrent secondary bacterial cholangitis. Progress in our basic understanding of PSC is desperately needed in order to rationally design new therapeutic approaches to this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSC:

Primary sclerosing cholangitis

IBD:

Inflammatory bowel disease

HLA:

Human leukocyte antigen

UC:

Ulcerative colitis

Mdr2:

Multi-drug resistance-2

NK:

Natural killer

KIRs:

Killer immunoglobulin-like receptors

MIC:

Major histocompatibility complex class I chain related

MAdCAM-1:

Mucosal addressin cell adhesion molecule-1

PBC:

Primary biliary cirrhosis

LIL:

Liver infiltrating lymphocytes

TGF:

Transforming growth factor

BEC:

Biliary epithelial cells

PAMPs:

Pathogen-associated molecular patterns

LPS:

Lipopolysaccharide

TLRs:

Toll-like receptors

References

  1. Chapman R, Cullen S (2008) Etiopathogenesis of primary sclerosing cholangitis. World J Gastroenterol 14:3350–3359

    PubMed  CAS  Google Scholar 

  2. Aoki CA, Bowlus CL, Gershwin ME (2005) The immunobiology of primary sclerosing cholangitis. Autoimmun Rev 4:137–143

    PubMed  CAS  Google Scholar 

  3. Saich R, Chapman R (2008) Primary sclerosing cholangitis, autoimmune hepatitis and overlap syndromes in inflammatory bowel disease. World J Gastroenterol 14:331–337

    PubMed  Google Scholar 

  4. Aron JH, Bowlus CL (2009) The immunobiology of primary sclerosing cholangitis. Semin Immunopathol 31:383–397

    PubMed  CAS  Google Scholar 

  5. Loftus EV Jr, Harewood GC, Loftus CG et al (2005) PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54:91–96

    PubMed  Google Scholar 

  6. Cangemi JR, Wiesner RH, Beaver SJ et al (1989) Effect of proctocolectomy for chronic ulcerative colitis on the natural history of primary sclerosing cholangitis. Gastroenterology 96:790–794

    PubMed  CAS  Google Scholar 

  7. Florin TH, Pandeya N, Radford-Smith GL (2004) Epidemiology of appendicectomy in primary sclerosing cholangitis and ulcerative colitis: its influence on the clinical behaviour of these diseases. Gut 53:973–979

    PubMed  CAS  Google Scholar 

  8. Mitchell SA, Thyssen M, Orchard TR, Jewell DP, Fleming KA, Chapman RW (2002) Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut 51:567–573

    PubMed  CAS  Google Scholar 

  9. van Erpecum KJ, Smits SJ, van de Meeberg PC et al (1996) Risk of primary sclerosing cholangitis is associated with nonsmoking behavior. Gastroenterology 110:1503–1506

    PubMed  Google Scholar 

  10. Loftus EV Jr, Sandborn WJ, Tremaine WJ et al (1996) Primary sclerosing cholangitis is associated with nonsmoking: a case-control study. Gastroenterology 110:1496–1502

    PubMed  Google Scholar 

  11. Cohen RD, Hanauer SB (1996) Protection from primary sclerosing cholangitis: smoke trails of just coattails? Gastroenterology 110:1658–1662

    PubMed  CAS  Google Scholar 

  12. Bowlus CL, Li CS, Karlsen TH, Lie BA, Selmi C (2010) Primary sclerosing cholangitis in genetically diverse populations listed for liver transplantation: unique clinical and human leukocyte antigen associations. Liver Transpl 16:1324–1330

    PubMed  Google Scholar 

  13. Bergquist A, Lindberg G, Saarinen S, Broome U (2005) Increased prevalence of primary sclerosing cholangitis among first-degree relatives. J Hepatol 42:252–256

    PubMed  Google Scholar 

  14. Bergquist A, Montgomery SM, Bahmanyar S et al (2008) Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 6:939–943

    PubMed  Google Scholar 

  15. Yang X, Cullen SN, Li JH, Chapman RW, Jewell DP (2004) Susceptibility to primary sclerosing cholangitis is associated with polymorphisms of intercellular adhesion molecule-1. J Hepatol 40:375–379

    PubMed  CAS  Google Scholar 

  16. Bowlus CL, Karlsen TH, Broome U et al (2006) Analysis of MAdCAM-1 and ICAM-1 polymorphisms in 365 Scandinavian patients with primary sclerosing cholangitis. J Hepatol 45:704–710

    PubMed  CAS  Google Scholar 

  17. Karlsen TH, Franke A, Melum E et al (2010) Genome-wide association analysis in primary sclerosing cholangitis. Gastroenterology 138:1102–1111

    PubMed  Google Scholar 

  18. Schrumpf E, Fausa O, Forre O, Dobloug JH, Ritland S, Thorsby E (1982) HLA antigens and immunoregulatory T cells in ulcerative colitis associated with hepatobiliary disease. Scand J Gastroenterol 17:187–191

    PubMed  CAS  Google Scholar 

  19. Chapman RW, Varghese Z, Gaul R, Patel G, Kokinon N, Sherlock S (1983) Association of primary sclerosing cholangitis with HLA-B8. Gut 24:38–41

    PubMed  CAS  Google Scholar 

  20. Farrant JM, Doherty DG, Donaldson PT et al (1992) Amino acid substitutions at position 38 of the DR beta polypeptide confer susceptibility to and protection from primary sclerosing cholangitis. Hepatology 16:390–395

    PubMed  CAS  Google Scholar 

  21. Spurkland A, Saarinen S, Boberg KM et al (1999) HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations. Tissue Antigens 53:459–469

    PubMed  CAS  Google Scholar 

  22. Karlsen TH, Boberg KM, Vatn M et al (2007) Different HLA class II associations in ulcerative colitis patients with and without primary sclerosing cholangitis. Genes Immun 8:275–278

    PubMed  CAS  Google Scholar 

  23. Franke A, Balschun T, Karlsen TH et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323

    PubMed  CAS  Google Scholar 

  24. Oksenberg JR, Barcellos LF, Cree BA et al (2004) Mapping multiple sclerosis susceptibility to the HLA-DR locus in African Americans. Am J Hum Genet 74:160–167

    PubMed  CAS  Google Scholar 

  25. Wiencke K, Spurkland A, Schrumpf E, Boberg KM (2001) Primary sclerosing cholangitis is associated to an extended B8-DR3 haplotype including particular MICA and MICB alleles. Hepatology 34:625–630

    PubMed  CAS  Google Scholar 

  26. Norris S, Kondeatis E, Collins R et al (2001) Mapping MHC-encoded susceptibility and resistance in primary sclerosing cholangitis: the role of MICA polymorphism. Gastroenterology 120:1475–1482

    PubMed  CAS  Google Scholar 

  27. Bernal W, Moloney M, Underhill J, Donaldson PT (1999) Association of tumor necrosis factor polymorphism with primary sclerosing cholangitis. J Hepatol 30:237–241

    PubMed  CAS  Google Scholar 

  28. Mitchell SA, Grove J, Spurkland A et al (2001) Association of the tumour necrosis factor alpha -308 but not the interleukin 10–627 promoter polymorphism with genetic susceptibility to primary sclerosing cholangitis. Gut 49:288–294

    PubMed  CAS  Google Scholar 

  29. Karlsen TH, Boberg KM, Olsson M et al (2007) Particular genetic variants of ligands for natural killer cell receptors may contribute to the HLA associated risk of primary sclerosing cholangitis. J Hepatol 46:899–906

    PubMed  CAS  Google Scholar 

  30. Khakoo SI, Carrington M (2006) KIR and disease: a model system or system of models? Immunol Rev 214:186–201

    PubMed  CAS  Google Scholar 

  31. Hov JR, Lleo A, Selmi C et al (2010) Genetic associations in Italian primary sclerosing cholangitis: heterogeneity across Europe defines a critical role for HLA-C. J Hepatol 52:712–717

    PubMed  CAS  Google Scholar 

  32. Gaj P, Habior A, Mikula M, Ostrowski J (2008) Lack of evidence for association of primary sclerosing cholangitis and primary biliary cirrhosis with risk alleles for Crohn’s disease in Polish patients. BMC Med Genet 9:81

    PubMed  Google Scholar 

  33. Karlsen TH, Hampe J, Wiencke K et al (2007) Genetic polymorphisms associated with inflammatory bowel disease do not confer risk for primary sclerosing cholangitis. Am J Gastroenterol 102:115–121

    PubMed  CAS  Google Scholar 

  34. Eike MC, Nordang GB, Karlsen TH et al (2008) The FCRL3–169T > C polymorphism is associated with rheumatoid arthritis and shows suggestive evidence of involvement with juvenile idiopathic arthritis in a Scandinavian panel of autoimmune diseases. Ann Rheum Dis 67:1287–1291

    PubMed  CAS  Google Scholar 

  35. Franke A, Balschun T, Karlsen TH et al (2008) Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40:713–715

    PubMed  CAS  Google Scholar 

  36. Fisher SA, Tremelling M, Anderson CA et al (2008) Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 40:710–712

    PubMed  CAS  Google Scholar 

  37. Weersma RK, Stokkers PC, Cleynen I et al (2009) Confirmation of multiple Crohn's disease susceptibility loci in a large Dutch-Belgian cohort. Am J Gastroenterol 104:630–638

    PubMed  CAS  Google Scholar 

  38. Keitel V, Donner M, Winandy S, Kubitz R, Haussinger D (2008) Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 372:78–84

    PubMed  CAS  Google Scholar 

  39. Kawamata Y, Fujii R, Hosoya M et al (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278:9435–9440

    PubMed  CAS  Google Scholar 

  40. Keitel V, Cupisti K, Ullmer C, Knoefel WT, Kubitz R, Haussinger D (2009) The membrane-bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders. Hepatology 50:861–870

    PubMed  CAS  Google Scholar 

  41. Henckaerts L, Jaspers M, Van Steenbergen W et al (2009) Cystic fibrosis transmembrane conductance regulator gene polymorphisms in patients with primary sclerosing cholangitis. J Hepatol 50:150–157

    PubMed  CAS  Google Scholar 

  42. Blanco PG, Zaman MM, Junaidi O et al (2004) Induction of colitis in cftr-/- mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol 287:G491–G496

    PubMed  CAS  Google Scholar 

  43. Sheth S, Shea JC, Bishop MD et al (2003) Increased prevalence of CFTR mutations and variants and decreased chloride secretion in primary sclerosing cholangitis. Hum Genet 113:286–292

    PubMed  Google Scholar 

  44. Girodon E, Sternberg D, Chazouilleres O et al (2002) Cystic fibrosis transmembrane conductance regulator (CFTR) gene defects in patients with primary sclerosing cholangitis. J Hepatol 37:192–197

    PubMed  CAS  Google Scholar 

  45. Hov JR, Keitel V, Laerdahl JK et al (2010) Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE 5:e12403

    PubMed  Google Scholar 

  46. Chan SW, Lim CJ, Chen L et al (2010) The hippo pathway in biological control and cancer development. J Cell Physiol. doi:10.1002/jcp.22435

  47. Zhou YQ, Chen YQ, Fisher JH, Wang MH (2002) Activation of the RON receptor tyrosine kinase by macrophage-stimulating protein inhibits inducible cyclooxygenase-2 expression in murine macrophages. J Biol Chem 277:38104–38110

    PubMed  CAS  Google Scholar 

  48. Raab M, Wang H, Lu Y et al (2010) T cell receptor “inside-out” pathway via signaling module SKAP1-RapL regulates T cell motility and interactions in lymph nodes. Immunity 32:541–556

    PubMed  CAS  Google Scholar 

  49. Katagiri K, Katakai T, Ebisuno Y, Ueda Y, Okada T, Kinashi T (2009) Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes. EMBO J 28:1319–1331

    PubMed  CAS  Google Scholar 

  50. Goyette P, Lefebvre C, Ng A et al (2008) Gene-centric association mapping of chromosome 3p implicates MST1 in IBD pathogenesis. Mucosal Immunol 1:131–138

    PubMed  CAS  Google Scholar 

  51. Himmel ME, Hardenberg G, Piccirillo CA, Steiner TS, Levings MK (2008) The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology 125:145–153

    PubMed  CAS  Google Scholar 

  52. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211

    PubMed  CAS  Google Scholar 

  53. Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606

    PubMed  CAS  Google Scholar 

  54. Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603

    PubMed  CAS  Google Scholar 

  55. O’Mahony CA, Vierling JM (2006) Etiopathogenesis of primary sclerosing cholangitis. Semin Liver Dis 26:3–21

    PubMed  Google Scholar 

  56. Seki E, Brenner DA (2008) Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48:322–335

    PubMed  CAS  Google Scholar 

  57. Karrar A, Broome U, Sodergren T et al (2007) Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 132:1504–1514

    PubMed  CAS  Google Scholar 

  58. Cameron RG, Blendis LM, Neuman MG (2001) Accumulation of macrophages in primary sclerosing cholangitis. Clin Biochem 34:195–201

    PubMed  CAS  Google Scholar 

  59. Wu CT, Eiserich JP, Ansari AA et al (2003) Myeloperoxidase-positive inflammatory cells participate in bile duct damage in primary biliary cirrhosis through nitric oxide-mediated reactions. Hepatology 38:1018–1025

    PubMed  CAS  Google Scholar 

  60. Tsuneyama K, Harada K, Kono N et al (2001) Scavenger cells with gram-positive bacterial lipoteichoic acid infiltrate around the damaged interlobular bile ducts of primary biliary cirrhosis. J Hepatol 35:156–163

    PubMed  CAS  Google Scholar 

  61. Hobson CH, Butt TJ, Ferry DM, Hunter J, Chadwick VS, Broom MF (1988) Enterohepatic circulation of bacterial chemotactic peptide in rats with experimental colitis. Gastroenterology 94:1006–1013

    PubMed  CAS  Google Scholar 

  62. Anderson RP, Butt TJ, Chadwick VS (1992) Hepatobiliary excretion of bacterial formyl-methionyl peptides in rat. Structure activity studies. Dig Dis Sci 37:248–256

    PubMed  CAS  Google Scholar 

  63. Hobson CH, Roberts EC, Broom MF, Mellor DM, Sherriff RM, Chadwick VS (1990) Radio-immunoassay for formyl methionyl leucyl phenylalanine. I. Development and application to assessment of chemotactic peptide production by enteric bacteria. J Gastroenterol Hepatol 5:32–37

    PubMed  CAS  Google Scholar 

  64. Yamada S, Ishii M, Kisara N, Nagatomi R, Toyota T (1999) Macrophages are essential for lymphocyte infiltration in formyl peptide-induced cholangitis in rat liver. Liver 19:253–258

    PubMed  CAS  Google Scholar 

  65. Yamada S, Ishii M, Liang LS, Yamamoto T, Toyota T (1994) Small duct cholangitis induced by N-formyl l-methionine l-leucine l-tyrosine in rats. J Gastroenterol 29:631–636

    PubMed  CAS  Google Scholar 

  66. Lichtman SN, Sartor RB, Keku J, Schwab JH (1990) Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology 98:414–423

    PubMed  CAS  Google Scholar 

  67. Lichtman SN, Keku J, Schwab JH, Sartor RB (1991) Hepatic injury associated with small bowel bacterial overgrowth in rats is prevented by metronidazole and tetracycline. Gastroenterology 100:513–519

    PubMed  CAS  Google Scholar 

  68. Lichtman SN, Okoruwa EE, Keku J, Schwab JH, Sartor RB (1992) Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth. J Clin Invest 90:1313–1322

    PubMed  CAS  Google Scholar 

  69. Bjornsson E, Cederborg A, Akvist A, Simren M, Stotzer PO, Bjarnason I (2005) Intestinal permeability and bacterial growth of the small bowel in patients with primary sclerosing cholangitis. Scand J Gastroenterol 40:1090–1094

    PubMed  Google Scholar 

  70. Ponsioen CY, Defoer J, Ten Kate FJ et al (2002) A survey of infectious agents as risk factors for primary sclerosing cholangitis: are Chlamydia species involved? Eur J Gastroenterol Hepatol 14:641–648

    PubMed  Google Scholar 

  71. Krasinskas AM, Yao Y, Randhawa P, Dore MP, Sepulveda AR (2007) Helicobacter pylori may play a contributory role in the pathogenesis of primary sclerosing cholangitis. Dig Dis Sci 52:2265–2270

    PubMed  Google Scholar 

  72. Boomkens SY, de Rave S, Pot RG et al (2005) The role of Helicobacter spp. in the pathogenesis of primary biliary cirrhosis and primary sclerosing cholangitis. FEMS Immunol Med Microbiol 44:221–225

    PubMed  CAS  Google Scholar 

  73. Leong RW, Sung JJ (2002) Review article: Helicobacter species and hepatobiliary diseases. Aliment Pharmacol Ther 16:1037–1045

    PubMed  CAS  Google Scholar 

  74. Pohl J, Ring A, Stremmel W, Stiehl A (2006) The role of dominant stenoses in bacterial infections of bile ducts in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 18:69–74

    PubMed  Google Scholar 

  75. Aoki CA, Dawson K, Kenny TP, Gershwin ME, Bowlus CL (2006) Gene expression by PBMC in primary sclerosing cholangitis: evidence for dysregulation of immune mediated genes. Clin Dev Immunol 13:265–271

    PubMed  CAS  Google Scholar 

  76. Milner CM, Higman VA, Day AJ (2006) TSG-6: a pluripotent inflammatory mediator? Biochem Soc Trans 34:446–450

    PubMed  CAS  Google Scholar 

  77. Grant AJ, Lalor PF, Salmi M, Jalkanen S, Adams DH (2002) Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359:150–157

    PubMed  Google Scholar 

  78. Eksteen B, Mora JR, Haughton EL et al (2009) Gut homing receptors on CD8 T-cells ARE retinoic acid dependent and not maintained by liver dendritic or stellate cells. Gastroenterol 137:320–329

    CAS  Google Scholar 

  79. Eksteen B, Miles A, Curbishley SM et al (2006) Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J Immunol 177:593–603

    PubMed  CAS  Google Scholar 

  80. Eksteen B, Grant AJ, Miles A et al (2004) Hepatic endothelial CCL25 mediates the recruitment of CCR9+ gut-homing lymphocytes to the liver in primary sclerosing cholangitis. J Exp Med 200:1511–1517

    PubMed  CAS  Google Scholar 

  81. Grant AJ, Goddard S, Ahmed-Choudhury J et al (2002) Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol 160:1445–1455

    PubMed  CAS  Google Scholar 

  82. Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH (2001) MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology 33:1065–1072

    PubMed  CAS  Google Scholar 

  83. Kurkijarvi R, Adams DH, Leino R, Mottonen T, Jalkanen S, Salmi M (1998) Circulating form of human vascular adhesion protein-1 (VAP-1): increased serum levels in inflammatory liver diseases. J Immunol 161:1549–1557

    PubMed  CAS  Google Scholar 

  84. Oo YH, Weston CJ, Lalor PF et al (2010) Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J Immunol 184:2886–2898

    PubMed  CAS  Google Scholar 

  85. Oo YH, Adams DH (2010) The role of chemokines in the recruitment of lymphocytes to the liver. J Autoimmun 34:45–54

    PubMed  CAS  Google Scholar 

  86. Borchers AT, Shimoda S, Bowlus C, Keen CL, Gershwin ME (2009) Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis. Semin Immunopathol 31:309–322

    PubMed  CAS  Google Scholar 

  87. Hillan KJ, Hagler KE, MacSween RN et al (1999) Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease. Liver 19:509–518

    PubMed  CAS  Google Scholar 

  88. Patsenker E, Popov Y, Stickel F, Jonczyk A, Goodman SL, Schuppan D (2008) Inhibition of integrin alphavbeta6 on cholangiocytes blocks transforming growth factor-beta activation and retards biliary fibrosis progression. Gastroenterology 135:660–670

    PubMed  CAS  Google Scholar 

  89. Trauner M, Fickert P, Halilbasic E, Moustafa T (2008) Lessons from the toxic bile concept for the pathogenesis and treatment of cholestatic liver diseases. Wien Med Wochenschr 158:542–548

    PubMed  Google Scholar 

  90. Fickert P, Zollner G, Fuchsbichler A et al (2002) Ursodeoxycholic acid aggravates bile infarcts in bile duct-ligated and Mdr2 knockout mice via disruption of cholangioles. Gastroenterology 123:1238–1251

    PubMed  CAS  Google Scholar 

  91. Popov Y, Patsenker E, Fickert P, Trauner M, Schuppan D (2005) Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol 43:1045–1054

    PubMed  CAS  Google Scholar 

  92. Jahnel J, Fickert P, Langner C et al (2009) Impact of experimental colitis on hepatobiliary transporter expression and bile duct injury in mice. Liver Int 29:1316–1325

    PubMed  CAS  Google Scholar 

  93. Fickert P, Fuchsbichler A, Wagner M et al (2004) Regurgitation of bile acids from leaky bile ducts causes sclerosing cholangitis in Mdr2 (Abcb4) knockout mice. Gastroenterology 127:261–274

    PubMed  CAS  Google Scholar 

  94. Fickert P, Moustafa T, Trauner M (2007) Primary sclerosing cholangitis—the arteriosclerosis of the bile duct? Lipids Health Dis 6:3

    PubMed  Google Scholar 

  95. Gallegos-Orozco JF, Yurk C E, Wang N et al (2005) Lack of association of common cystic fibrosis transmembrane conductance regulator gene mutations with primary sclerosing cholangitis. Am J Gastroenterol 100:874–878

    PubMed  CAS  Google Scholar 

  96. McGill JM, Williams DM, Hunt CM (1996) Survey of cystic fibrosis transmembrane conductance regulator genotypes in primary sclerosing cholangitis. Dig Dis Sci 41:540–542

    PubMed  CAS  Google Scholar 

  97. Denk GU, Bikker H, Lekanne Dit Deprez RH et al (2010) ABCB4 deficiency: a family saga of early onset cholelithiasis, sclerosing cholangitis and cirrhosis and a novel mutation in the ABCB4 gene. Hepatol Res 40:937–941

    PubMed  CAS  Google Scholar 

  98. Poupon R, Arrive L, Rosmorduc O (2010) The cholangiographic features of severe forms of ABCB4/MDR3 deficiency-associated cholangiopathy in adults. Gastroentérol Clin Biol 34:380–387

    PubMed  CAS  Google Scholar 

  99. Pauli-Magnus C, Kerb R, Fattinger K et al (2004) BSEP and MDR3 haplotype structure in healthy Caucasians, primary biliary cirrhosis and primary sclerosing cholangitis. Hepatology 39:779–791

    PubMed  CAS  Google Scholar 

  100. Rosmorduc O, Hermelin B, Boelle PY, Poupon RE, Poupon R, Chazouilleres O (2004) ABCB4 gene mutations and primary sclerosing cholangitis. Gastroenterology 126:1220–1222, author reply 1222-3

    PubMed  Google Scholar 

  101. Stiehl A, Rudolph G, Sauer P, Theilmann L (1995) Biliary secretion of bile acids and lipids in primary sclerosing cholangitis. Influence of cholestasis and effect of ursodeoxycholic acid treatment. J Hepatol 23:283–289

    PubMed  CAS  Google Scholar 

  102. Karlsen TH, Lie BA, Frey Froslie K et al (2006) Polymorphisms in the steroid and xenobiotic receptor gene influence survival in primary sclerosing cholangitis. Gastroenterology 131:781–787

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher L. Bowlus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowlus, C.L. Cutting Edge Issues in Primary Sclerosing Cholangitis. Clinic Rev Allerg Immunol 41, 139–150 (2011). https://doi.org/10.1007/s12016-010-8221-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-010-8221-3

Keywords

Navigation