Skip to main content

Advertisement

Log in

lncRNA MEG3 Promotes Osteogenic Differentiation of Tendon Stem Cells Via the miR-129-5p/TCF4/β-Catenin Axis and thus Contributes to Trauma-Induced Heterotopic Ossification

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Background

Heterotopic ossification (HO) is one of the most intractable conditions following injury to the musculoskeletal system. In recent years, much attention has been paid to the role of lncRNA in musculoskeletal disorders, but its role in HO was still unclear. Therefore, this study attempted to determine the role of lncRNA MEG3 in the formation of post-traumatic HO and further explore the underlying mechanisms.

Results

On the basis of high-throughput sequencing and qPCR validation, elevated expression of the lncRNA MEG3 was shown during traumatic HO formation. Accordingly, in vitro experiments demonstrated that lncRNA MEG3 promoted aberrant osteogenic differentiation of tendon-derived stem cells (TDSCs). Mechanical exploration through RNA pulldown, luciferase reporter gene assay and RNA immunoprecipitation assay identified the direct binding relationship between miR-129-5p and MEG3, or miR-129-5p and TCF4. Further rescue experiments confirmed the miR-129-5p/TCF4/β-catenin axis to be downstream molecular cascade responsible for the osteogenic-motivating effects of MEG3 on the TDSCs. Finally, experiments in a mouse burn/tenotomy model corroborated the promoting effects of MEG3 on the formation of HO through the miR-129-5p/TCF4/β-catenin axis.

Conclusions

Our study demonstrated that the lncRNA MEG3 promoted osteogenic differentiation of TDSCs and thus the formation of heterotopic ossification, which could be a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

HO:

Heterotopic ossification

TDSCs:

Tendon stem cells

BMSCs:

Bone marrow mesenchymal cells

MEG3:

Maternally expressed gene 3

TCF4:

Transcription factor 4

FBS:

Fetal Bovine Serum

PDGFRα:

Platelet-derived growth factor receptor-α

EDTA:

Ethylenediaminetetraacetic acid

FISH :

Fluorescence in situ hybridization

IHC:

Immunohistochemistry

micro-CT:

Micro-computed tomography

ECL:

Electrochemiluminescence

BCA:

Bicinchoninic acid

TBST:

Tris buffered saline tween

AAV9:

Adeno-associated virus 9

ALP:

Alkaline phosphatase

ARS:

Alizarin Red S

RIP:

RNA Immunoprecipitation

HE:

Hematoxylin and eosin

PBS:

Phosphate-buffered saline

qRT-PCR:

Quantitative reserve-transcriptase polymerase chain reaction

SD:

Standard deviation

References

  1. Feng, H., Xing, W., Han, Y., Sun, J., Kong, M., Gao, B., et al. (2020). Tendon-derived cathepsin K-expressing progenitor cells activate Hedgehog signaling to drive heterotopic ossification. The Journal of Clinical Investigation, 130(12), 6354–6365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agarwal, S., Loder, S. J., Breuler, C., Li, J., Cholok, D., Brownley, C., et al. (2017). Strategic Targeting of Multiple BMP Receptors Prevents Trauma-Induced Heterotopic Ossification. Molecular Therapy, 25(8), 1974–1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schneider, J. C., Simko, L. C., Goldstein, R., Shie, V. L., Chernack, B., Levi, B., et al. (2017). Predicting Heterotopic Ossification Early After Burn Injuries: A Risk Scoring System. Annals of Surgery, 266(1), 179–184.

    Article  PubMed  Google Scholar 

  4. Wong, K. R., Mychasiuk, R., O’Brien, T. J., Shultz, S. R., McDonald, S. J., & Brady, R. D. (2020). Neurological heterotopic ossification: Novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Res., 8(1), 42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rudiger, H. A., Dittrich, M., Robinson, J., Mansour, T., Schwab, T., Stadelmann, V. A., et al. (2020). The Impact of Heterotopic Ossification on Self-Reported Outcomes After Total Hip Arthroplasty Using the Direct Anterior Approach. Journal of Bone and Joint Surgery. American Volume, 102(Suppl 2), 91–98.

    Article  PubMed  Google Scholar 

  6. Barfield, W. R., Holmes, R. E., & Hartsock, L. A. (2017). Heterotopic Ossification in Trauma. Orthopedic Clinics of North America, 48(1), 35–46.

    Article  PubMed  Google Scholar 

  7. Legosz, P., Drela, K., Pulik, L., Sarzynska, S., & Maldyk, P. (2018). Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clinical and Experimental Pharmacology and Physiology, 45(12), 1229–1235.

    Article  CAS  PubMed  Google Scholar 

  8. Kodde, I. F., van Rijn, J., van den Bekerom, M. P., & Eygendaal, D. (2013). Surgical treatment of post-traumatic elbow stiffness: A systematic review. Journal of Shoulder and Elbow Surgery, 22(4), 574–580.

    Article  PubMed  Google Scholar 

  9. Lee, E. K., Namdari, S., Hosalkar, H. S., Keenan, M. A., & Baldwin, K. D. (2013). Clinical results of the excision of heterotopic bone around the elbow: A systematic review. Journal of Shoulder and Elbow Surgery, 22(5), 716–722.

    Article  PubMed  Google Scholar 

  10. Ramm Sander, P., Hau, P., Koch, S., Schutze, K., Bogdahn, U., Kalbitzer, H. R., et al. (2013). Stem cell metabolic and spectroscopic profiling. Trends in Biotechnology, 31(3), 204–213.

    Article  CAS  PubMed  Google Scholar 

  11. Pulik, L., Mierzejewski, B., Ciemerych, M. A., Brzoska, E., & Legosz, P. (2020). The survey of cells responsible for heterotopic ossification development in skeletal muscles-human and mouse models. Cells, 9(6), 1324.

  12. Agarwal, S., Loder, S., Cholok, D., Li, J., Breuler, C., Drake, J., et al. (2017). Surgical Excision of Heterotopic Ossification Leads to Re-Emergence of Mesenchymal Stem Cell Populations Responsible for Recurrence. Stem Cells Translational Medicine, 6(3), 799–806.

    Article  CAS  PubMed  Google Scholar 

  13. Batista, P. J., & Chang, H. Y. (2013). Long noncoding RNAs: Cellular address codes in development and disease. Cell, 152(6), 1298–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huarte, M. (2015). The emerging role of lncRNAs in cancer. Nature Medicine, 21(11), 1253–1261.

    Article  CAS  PubMed  Google Scholar 

  15. Fatica, A., & Bozzoni, I. (2014). Long non-coding RNAs: New players in cell differentiation and development. Nature Reviews Genetics, 15(1), 7–21.

    Article  CAS  PubMed  Google Scholar 

  16. Benetatos, L., Vartholomatos, G., & Hatzimichael, E. (2011). MEG3 imprinted gene contribution in tumorigenesis. International Journal of Cancer, 129(4), 773–779.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, P., Ren, Z., & Sun, P. (2012). Overexpression of the long non-coding RNA MEG3 impairs in vitro glioma cell proliferation. Journal of Cellular Biochemistry, 113(6), 1868–1874.

    Article  CAS  PubMed  Google Scholar 

  18. Zhuang, W., Ge, X., Yang, S., Huang, M., Zhuang, W., Chen, P., et al. (2015). Upregulation of lncRNA MEG3 Promotes Osteogenic Differentiation of Mesenchymal Stem Cells From Multiple Myeloma Patients By Targeting BMP4 Transcription. Stem Cells., 33(6), 1985–1997.

    Article  CAS  PubMed  Google Scholar 

  19. Boon, R. A., Hofmann, P., Michalik, K. M., Lozano-Vidal, N., Berghauser, D., Fischer, A., et al. (2016). Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Angiogenesis. Journal of the American College of Cardiology, 68(23), 2589–2591.

    Article  PubMed  Google Scholar 

  20. Liu, X., Zhu, W., Wang, L., Wu, J., Ding, F., & Song, Y. (2019). miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A. In Vitro Cellular and Developmental Biology. Animal, 55(3), 189–202.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, X., Deng, X., Ding, R., Cheng, X., & Jia, J. (2020). Chondrocyte suppression is mediated by miR-129-5p via GDF11/SMAD3 signaling in developmental dysplasia of the hip. Journal of Orthopaedic Research, 38(12), 2559–2572.

    Article  CAS  PubMed  Google Scholar 

  22. Ye, J., Lin, Y., Yu, Y., & Sun, D. (2020). LncRNA NEAT1/microRNA-129-5p/SOCS2 axis regulates liver fibrosis in alcoholic steatohepatitis. Journal of Translational Medicine, 18(1), 445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, T., Wu, Q., Zhang, Y., Lu, T., Yue, W., & Zhang, D. (2016). Tcf4 Controls Neuronal Migration of the Cerebral Cortex through Regulation of Bmp7. Frontiers in Molecular Neuroscience, 9, 94.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang, L., Wu, F., Song, Y., Li, X., Wu, Q., Duan, Y., et al. (2016). Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death & Disease, 7(8), e2327.

    Article  CAS  Google Scholar 

  25. Peterson, J. R., Agarwal, S., Brownley, R. C., Loder, S. J., Ranganathan, K., Cederna, P. S., et al. (2015). Direct Mouse Trauma/Burn Model of Heterotopic Ossification. Journal of Visualized Experiments, 102, e52880.

    Google Scholar 

  26. Sakuma, C., Sato, T., Shibata, T., Nakagawa, M., Kurosawa, Y., Okumura, C. J., et al. (2021). Western blotting analysis of proteins separated by agarose native gel electrophoresis. International Journal of Biological Macromolecules, 166, 1106–1110.

    Article  CAS  PubMed  Google Scholar 

  27. Gregory, C. A., Gunn, W. G., Peister, A., & Prockop, D. J. (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: Comparison with cetylpyridinium chloride extraction. Analytical Biochemistry, 329(1), 77–84.

    Article  CAS  PubMed  Google Scholar 

  28. Vaishya, R., Maduka, C. O., Agarwal, A. K., Vijay, V., & Vaish, A. (2019). Heterotopic Ossification of Tendo Achilles: An Uncommon Clinical Entity. J Orthop Case Rep., 9(2), 45–47.

    PubMed  PubMed Central  Google Scholar 

  29. Agabalyan, N. A., Evans, D. J., & Stanley, R. L. (2013). Investigating tendon mineralisation in the avian hindlimb: A model for tendon ageing, injury and disease. Journal of Anatomy, 223(3), 262–277.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Cholok, D., Chung, M. T., Ranganathan, K., Ucer, S., Day, D., Davis, T. A., et al. (2018). Heterotopic ossification and the elucidation of pathologic differentiation. Bone, 109, 12–21.

    Article  PubMed  Google Scholar 

  31. Zhang, Q., Zhou, D., Wang, H., & Tan, J. (2020). Heterotopic ossification of tendon and ligament. Journal of Cellular and Molecular Medicine, 24(10), 5428–5437.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rui, Y. F., Lui, P. P., Li, G., Fu, S. C., Lee, Y. W., & Chan, K. M. (2010). Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Engineering Part A, 16(5), 1549–1558.

    Article  CAS  PubMed  Google Scholar 

  33. Asai, S., Otsuru, S., Candela, M. E., Cantley, L., Uchibe, K., Hofmann, T. J., et al. (2014). Tendon progenitor cells in injured tendons have strong chondrogenic potential: The CD105-negative subpopulation induces chondrogenic degeneration. Stem Cells., 32(12), 3266–3277.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, K., Zhang, Z., Chen, M., Moqbel, S. A. A., He, Y., Ma, C., et al. (2020). Nesfatin-1 Promotes the Osteogenic Differentiation of Tendon-Derived Stem Cells and the Pathogenesis of Heterotopic Ossification in Rat Tendons via the mTOR Pathway. Frontiers in Cell and Development Biology, 8, 547342.

    Article  Google Scholar 

  35. Ulitsky, I., & Bartel, D. P. (2013). lincRNAs: Genomics, evolution, and mechanisms. Cell, 154(1), 26–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, C. G., Hu, Y. H., Su, S. L., & Zhong, D. (2020). LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/beta-catenin signaling pathway. Experimental & Molecular Medicine, 52(8), 1310–1325.

    Article  Google Scholar 

  37. Ma, J., Zhang, X., Zhang, H., & Chen, H. (2020). lncRNA MEG3 Suppresses the Progression of Ankylosis Spondylitis by Regulating the Let-7i/SOST Axis. Frontiers in Molecular Biosciences, 7, 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen, S., Jia, L., Zhang, S., Zheng, Y., & Zhou, Y. (2018). DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Research & Therapy, 9(1), 185.

    Article  CAS  Google Scholar 

  39. Liu, Y., Zeng, X., Miao, J., Liu, C., Wei, F., Liu, D., et al. (2019). Upregulation of long noncoding RNA MEG3 inhibits the osteogenic differentiation of periodontal ligament cells. Journal of Cellular Physiology, 234(4), 4617–4626.

    Article  CAS  PubMed  Google Scholar 

  40. Geisler, S., & Coller, J. (2013). RNA in unexpected places: Long non-coding RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology, 14(11), 699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P. P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146(3):353–8.

  42. Wang, Q., Li, Y., Zhang, Y., Ma, L., Lin, L., Meng, J., et al. (2017). LncRNA MEG3 inhibited osteogenic differentiation of bone marrow mesenchymal stem cells from postmenopausal osteoporosis by targeting miR-133a-3p. Biomedicine & Pharmacotherapy, 89, 1178–1186.

    Article  CAS  Google Scholar 

  43. Wang, S., Xiong, G., Ning, R., Pan, Z., Xu, M., Zha, Z., et al. (2022). LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p / SOD3 axis. Acta Biochimica Polonica, 69(1), 71–77.

    CAS  PubMed  Google Scholar 

  44. Zhu, Z., Zhang, X., Jiang, Y., Ruan, S., Huang, F., Zeng, H., et al. (2021). NEAT1 functions as a key mediator of BMP2 to promote osteogenic differentiation of renal interstitial fibroblasts. Epigenomics, 13(15), 1171–1186.

    Article  CAS  PubMed  Google Scholar 

  45. Alexander, M. S., Kawahara, G., Motohashi, N., Casar, J. C., Eisenberg, I., Myers, J. A., et al. (2013). MicroRNA-199a is induced in dystrophic muscle and affects WNT signaling, cell proliferation, and myogenic differentiation. Cell Death and Differentiation, 20(9), 1194–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Formosa, A., Markert, E. K., Lena, A. M., Italiano, D., Finazzi-Agro, E., Levine, A. J., et al. (2014). MicroRNAs, miR-154, miR-299–5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485–3p, miR-495 and miR-654–3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene, 33(44):5173–82.

  47. Chiarini, F., Paganelli, F., Martelli, A. M., & Evangelisti, C. (2020). The role played by Wnt/beta-catenin signaling pathway in acute lymphoblastic leukemia. International Journal of Molecular Sciences, 21(3), 1098.

  48. Xu, L., Lin, W., Wen, L., & Li, G. (2019). Lgr5 in cancer biology: Functional identification of Lgr5 in cancer progression and potential opportunities for novel therapy. Stem Cell Research & Therapy, 10(1), 219.

    Article  Google Scholar 

  49. Tu, B., Yu, B., Wang, W., Li, J., Yuan, F., Zhu, J., et al. (2021). Inhibition of IL-17 prevents the progression of traumatic heterotopic ossification. Journal of Cellular and Molecular Medicine, 25(16), 7709–7719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, Y., Rattner, A., Zhou, Y., Williams, J., Smallwood, P. M., & Nathans, J. (2012). Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell, 151(6), 1332–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhanot, P., Brink, M., Samos, C. H., Hsieh, J. C., Wang, Y., Macke, J. P., et al. (1996). A new member of the frizzled__family from Drosophila functions as a Wingless__receptor. Nature, 382:225–30.

  52. Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., Skarnes, W. C. (2000). An LDL-receptor-related protein mediates__Wnt signalling in mice. Nature, 407:535–8.

Download references

Acknowledgements

We appreciated the support from Base for Interdisciplinary Innovative Talent Training, Shanghai Jiao Tong University and Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine.

Funding

This study were supported by National Natural Science Foundation of China (81830076, 8217090787); Shanghai Engineering Technology Research Center and Professional Technology Service Platform project of 2020 “Science and Technology Innovation Action Plan” of Shanghai (20DZ2254100); Municipal Hospital Clinical Skills and Innovation Capacity of Three-year Action Plan Program of Shanghai Shenkang Hospital Development Center (SHDC2020CR2039B, SHDC2020CR6019-002); Biomedical Technology Support Special Project of Shanghai “Science and Technology Innovation Action Plan” (20S31900300, 21S31902300); Clinical Research Center (CRC) of Shanghai University of Medicine and Health Sciences (20MC2020001); Research on transformation chain and transformation mode of scientific and technological achievements in public hospitals-Take Class A tertiary hospital in Shanghai as an example (lygl202214).

All the funding body have not participated in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HL and ZYS designed and conducted the in vitro and in vivo experiments, analyzed the data and wrote the manuscript.

YHH conducted some of the in vivo experiments, micro-CT, IHC, IF and WB analysis.

GL, XW and ZJT conducted some of the in vitro experiments, ALP, ARS, IF and WB analysis.

HJR conducted some of experiments of PCR and ELISA.

BT and ZYS conducted some of experiments of animal model and cell culture.

CYF designed and conducted the research, wrote the manuscript, directed the project, and provided funding.

JHL conducted the research, wrote the manuscript.

HL, ZYS, JHL and CYF have read and verified the underlying data.

All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Juehong Li or Cunyi Fan.

Ethics declarations

Ethics Approval and Consent to Participate

All experiments and procedures were approved by the ethics committee of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital.

Consent for Publication

All authors consent to publish this manuscript.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gang Luo and Yuehao Hu contribute equally to this work as co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, Z., Luo, G. et al. lncRNA MEG3 Promotes Osteogenic Differentiation of Tendon Stem Cells Via the miR-129-5p/TCF4/β-Catenin Axis and thus Contributes to Trauma-Induced Heterotopic Ossification. Stem Cell Rev and Rep 19, 2311–2328 (2023). https://doi.org/10.1007/s12015-023-10562-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10562-w

Keywords

Navigation