Skip to main content
Log in

Nuclear Tubulin Enhances CXCR4 Transcription and Promotes Chemotaxis Through TCF12 Transcription Factor in human Hematopoietic Stem Cells

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tubulins are cytoskeleton components in all eukaryotic cells and play crucial roles in various cellular activities by polymerizing into dynamic microtubules. A subpopulation of tubulin has been shown to localize in the nucleus, however, the function of nuclear tubulin remains largely unexplored. Here we report that microtubule depolymerization specifically upregulates surface CXCR4 expression in human hematopoietic stem cells (HSCs). Mechanistically, microtubule depolymerization results in accumulation of tubulin subunits in the nucleus, leading to elevated CXCR4 transcription and increased chemotaxis of human HSCs. Treatment with microtubule stabilizer Epothilone B strongly suppresses the phenotypes induced by microtubule depolymerizing agents in human HSCs. Furthermore, chromatin immunoprecipitation assay reveals an increased binding of nuclear tubulin and TCF12 transcription factor at the CXCR4 promoter region. Depletion of TCF12 significantly suppresses microtubule depolymerization mediated upregulation of CXCR4 surface expression. These results demonstrate a previously unknown function of nuclear tubulin in regulating gene transcription through TCF12. New strategy targeting nuclear tubulin-TCF12-CXCR4 axis may be applicable to enhance HSC transplantation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Raw data will be provided upon reasonable request.

Code Availability

Not applicable.

References

  1. Janke, C., & Magiera, M. M. (2020). The tubulin code and its role in controlling microtubule properties and functions. Nature Reviews Molecular Cell Biology, 21(6), 307–326. https://doi.org/10.1038/s41580-020-0214-3

    Article  CAS  PubMed  Google Scholar 

  2. Borisy, G., Heald, R., Howard, J., Janke, C., Musacchio, A., & Nogales, E. (2016). Microtubules: 50 years on from the discovery of tubulin. Nature Reviews Molecular Cell Biology, 17(5), 322–328. https://doi.org/10.1038/nrm.2016.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Menko, A. S., & Tan, K. B. (1980). Nuclear tubulin of tissue culture cells. Biochimica et Biophysica Acta, 629(2), 359–370. https://doi.org/10.1016/0304-4165(80)90108-7

    Article  CAS  PubMed  Google Scholar 

  4. Kirli, K., Karaca, S., Dehne, H. J., Samwer, M., Pan, K. T., Lenz, C., Urlaub, H., & Gorlich, D. (2015). A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. Elife, 4. https://doi.org/10.7554/eLife.11466

  5. Ruksha, K., Mezheyeuski, A., Nerovnya, A., Bich, T., Tur, G., Gorgun, J., Luduena, R., & Portyanko, A. (2019). Over-expression of betaII-tubulin and especially its localization in cell nuclei correlates with poorer outcomes in colorectal cancer. Cells, 8(1). https://doi.org/10.3390/cells8010025

  6. Kollman, J. M., Merdes, A., Mourey, L., & Agard, D. A. (2011). Microtubule nucleation by gamma-tubulin complexes. Nature Reviews Molecular Cell Biology, 12(11), 709–721. https://doi.org/10.1038/nrm3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanjuan-Pla, A., Macaulay, I. C., Jensen, C. T., Woll, P. S., Luis, T. C., Mead, A., Moore, S., Carella, C., Matsuoka, S., Bouriez Jones, T., Chowdhury, O., Stenson, L., Lutteropp, M., Green, J. C., Facchini, R., Boukarabila, H., Grover, A., Gambardella, A., Thongjuea, S., . . ., & Jacobsen, S. E. (2013). Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature, 502(7470): 232–236. https://doi.org/10.1038/nature12495

  8. Li, H. W., & Sykes, M. (2012). Emerging concepts in haematopoietic cell transplantation. Nature Reviews Immunology, 12(6), 403–416. https://doi.org/10.1038/nri3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratajczak, M. Z. (2015). A novel view of the adult bone marrow stem cell hierarchy and stem cell trafficking. Leukemia, 29(4), 776–782. https://doi.org/10.1038/leu.2014.346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, X., Guo, B., Capitano, M., & Broxmeyer, H. E. (2019). Past, present, and future efforts to enhance the efficacy of cord blood hematopoietic cell transplantation. F1000Res, 8. https://doi.org/10.12688/f1000research.20002.1

  11. Mazo, I. B., Massberg, S., & von Andrian, U. H. (2011). Hematopoietic stem and progenitor cell trafficking. Trends in Immunology, 32(10), 493–503. https://doi.org/10.1016/j.it.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lapidot, T., Dar, A., & Kollet, O. (2005). How do stem cells find their way home? Blood, 106(6), 1901–1910. https://doi.org/10.1182/blood-2005-04-1417

    Article  CAS  PubMed  Google Scholar 

  13. Quesenberry, P. J., & Becker, P. S. (1998). Stem cell homing: Rolling, crawling, and nesting. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15155–15157. https://doi.org/10.1073/pnas.95.26.15155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben-Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., & Lapidot, T. (1999). Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283(5403), 845–848. https://doi.org/10.1126/science.283.5403.845

    Article  CAS  PubMed  Google Scholar 

  15. Christopherson, K. W., 2nd., Hangoc, G., Mantel, C. R., & Broxmeyer, H. E. (2004). Modulation of hematopoietic stem cell homing and engraftment by CD26. Science, 305(5686), 1000–1003. https://doi.org/10.1126/science.1097071

    Article  CAS  PubMed  Google Scholar 

  16. Broxmeyer, H. E., Hoggatt, J., O’Leary, H. A., Mantel, C., Chitteti, B. R., Cooper, S., Messina-Graham, S., Hangoc, G., Farag, S., Rohrabaugh, S. L., Ou, X., Speth, J., Pelus, L. M., Srour, E. F., & Campbell, T. B. (2012). Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nature Medicine, 18(12), 1786–1796. https://doi.org/10.1038/nm.2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wysoczynski, M., Reca, R., Ratajczak, J., Kucia, M., Shirvaikar, N., Honczarenko, M., Mills, M., Wanzeck, J., Janowska-Wieczorek, A., & Ratajczak, M. Z. (2005). Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood, 105(1), 40–48. https://doi.org/10.1182/blood-2004-04-1430

    Article  CAS  PubMed  Google Scholar 

  18. Ratajczak, M. Z., & Adamiak, M. (2015). Membrane lipid rafts, master regulators of hematopoietic stem cell retention in bone marrow and their trafficking. Leukemia, 29(7), 1452–1457. https://doi.org/10.1038/leu.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adamiak, M., Abdel-Latif, A., Bujko, K., Thapa, A., Anusz, K., Tracz, M., Brzezniakiewicz-Janus, K., Ratajczak, J., Kucia, M., & Ratajczak, M. Z. (2020). Nlrp3 inflammasome signaling regulates the homing and engraftment of hematopoietic stem cells (HSPCs) by enhancing incorporation of CXCR4 receptor into membrane lipid rafts. Stem Cell Reviews and Reports, 16(5), 954–967. https://doi.org/10.1007/s12015-020-10005-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoggatt, J., Singh, P., Sampath, J., & Pelus, L. M. (2009). Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood, 113(22), 5444–5455. https://doi.org/10.1182/blood-2009-01-201335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Goessling, W., North, T. E., Loewer, S., Lord, A. M., Lee, S., Stoick-Cooper, C. L., Weidinger, G., Puder, M., Daley, G. Q., Moon, R. T., & Zon, L. I. (2009). Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell, 136(6), 1136–1147. https://doi.org/10.1016/j.cell.2009.01.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. North, T. E., Goessling, W., Walkley, C. R., Lengerke, C., Kopani, K. R., Lord, A. M., Weber, G. J., Bowman, T. V., Jang, I. H., Grosser, T., Fitzgerald, G. A., Daley, G. Q., Orkin, S. H., & Zon, L. I. (2007). Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 447(7147), 1007–1011. https://doi.org/10.1038/nature05883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo, B., Huang, X., Cooper, S., & Broxmeyer, H. E. (2017). Glucocorticoid hormone-induced chromatin remodeling enhances human hematopoietic stem cell homing and engraftment. Nature Medicine, 23(4), 424–428. https://doi.org/10.1038/nm.4298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goichberg, P., Kalinkovich, A., Borodovsky, N., Tesio, M., Petit, I., Nagler, A., Hardan, I., & Lapidot, T. (2006). cAMP-induced PKCzeta activation increases functional CXCR4 expression on human CD34+ hematopoietic progenitors. Blood, 107(3), 870–879. https://doi.org/10.1182/blood-2005-03-0941

    Article  CAS  PubMed  Google Scholar 

  25. Huang, X., Guo, B., Liu, S., Wan, J., & Broxmeyer, H. E. (2018). Neutralizing negative epigenetic regulation by HDAC5 enhances human haematopoietic stem cell homing and engraftment. Nature Communications, 9(1), 2741. https://doi.org/10.1038/s41467-018-05178-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, K., & Luduena, R. F. (2002). Characterization of nuclear betaII-tubulin in tumor cells: A possible novel target for taxol. Cell Motility and the Cytoskeleton, 53(1), 39–52. https://doi.org/10.1002/cm.10060

    Article  CAS  PubMed  Google Scholar 

  27. Binarova, P., & Tuszynski, J. (2019). Tubulin: Structure, functions and roles in disease. Cells, 8(10). https://doi.org/10.3390/cells8101294

  28. Zhang, L., Wei, X., Wang, Z., Liu, P., Hou, Y., Xu, Y., Su, H., Koci, M. D., Yin, H., & Zhang, C. (2023). NF-kappaB activation enhances STING signaling by altering microtubule-mediated STING trafficking. Cell Reports, 42(3), 112185. https://doi.org/10.1016/j.celrep.2023.112185

    Article  CAS  PubMed  Google Scholar 

  29. Yang, J., Zhang, L., Jiang, Z., Ge, C., Zhao, F., Jiang, J., Tian, H., Chen, T., Xie, H., Cui, Y., Yao, M., Li, H., & Li, J. (2019). TCF12 promotes the tumorigenesis and metastasis of hepatocellular carcinoma via upregulation of CXCR4 expression. Theranostics, 9(20), 5810–5827. https://doi.org/10.7150/thno.34973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kadakia, T., Tai, X., Kruhlak, M., Wisniewski, J., Hwang, I. Y., Roy, S., Guinter, T. I., Alag, A., Kehrl, J. H., Zhuang, Y., & Singer, A. (2019). E-protein-regulated expression of CXCR4 adheres preselection thymocytes to the thymic cortex. Journal of Experimental Medicine, 216(8), 1749–1761. https://doi.org/10.1084/jem.20182285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murakami, M., Kataoka, K., Tominaga, J., Nakagawa, O., & Kurihara, H. (2004). Differential cooperation between dHAND and three different E-proteins. Biochemical and Biophysical Research Communications, 323(1), 168–174. https://doi.org/10.1016/j.bbrc.2004.08.072

    Article  CAS  PubMed  Google Scholar 

  32. Veiga, D. F. T., Tremblay, M., Gerby, B., Herblot, S., Haman, A., Gendron, P., Lemieux, S., Zuniga-Pflucker, J. C., Hebert, J., Cohen, J. P., & Hoang, T. (2022). Monoallelic Heb/Tcf12 Deletion Reduces the Requirement for NOTCH1 Hyperactivation in T-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 13, 867443. https://doi.org/10.3389/fimmu.2022.867443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoang, T., Lambert, J. A., & Martin, R. (2016). SCL/TAL1 in hematopoiesis and cellular reprogramming. Current Topics in Developmental Biology, 118, 163–204. https://doi.org/10.1016/bs.ctdb.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  34. Torres-Machorro, A. L. (2021). Homodimeric and heterodimeric interactions among vertebrate basic helix-loop-helix transcription factors. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312855

  35. Fares, I., Chagraoui, J., Gareau, Y., Gingras, S., Ruel, R., Mayotte, N., Csaszar, E., Knapp, D. J., Miller, P., Ngom, M., Imren, S., Roy, D. C., Watts, K. L., Kiem, H. P., Herrington, R., Iscove, N. N., Humphries, R. K., Eaves, C. J., Cohen, S., . . ., & Sauvageau, G. (2014). Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science, 345(6203): 1509–1512. https://doi.org/10.1126/science.1256337

  36. Wagner, J. E., Jr., Brunstein, C. G., Boitano, A. E., DeFor, T. E., McKenna, D., Sumstad, D., Blazar, B. R., Tolar, J., Le, C., Jones, J., Cooke, M. P., & Bleul, C. C. (2016). Phase I/II trial of StemRegenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell, 18(1), 144–155. https://doi.org/10.1016/j.stem.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  37. Xu, D., Yang, M., Capitano, M., Guo, B., Liu, S., Wan, J., Broxmeyer, H. E., & Huang, X. (2021). Pharmacological activation of nitric oxide signaling promotes human hematopoietic stem cell homing and engraftment. Leukemia, 35(1), 229–234. https://doi.org/10.1038/s41375-020-0787-z

    Article  PubMed  Google Scholar 

  38. Belle, I., & Zhuang, Y. (2014). E proteins in lymphocyte development and lymphoid diseases. Current Topics in Developmental Biology, 110, 153–187. https://doi.org/10.1016/B978-0-12-405943-6.00004-X

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schrankel, C. S., Solek, C. M., Buckley, K. M., Anderson, M. K., & Rast, J. P. (2016). A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Developmental Biology, 416(1), 149–161. https://doi.org/10.1016/j.ydbio.2016.05.034

    Article  CAS  PubMed  Google Scholar 

  40. Peng, V., Georgescu, C., Bakowska, A., Pankow, A., Qian, L., Wren, J. D., & Sun, X. H. (2020). E proteins orchestrate dynamic transcriptional cascades implicated in the suppression of the differentiation of group 2 innate lymphoid cells. Journal of Biological Chemistry, 295(44), 14866–14877. https://doi.org/10.1074/jbc.RA120.013806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hidaka, R., Miyazaki, K., & Miyazaki, M. (2022). The E-Id Axis instructs adaptive versus innate lineage cell fate choice and instructs regulatory T cell differentiation. Frontiers in Immunology, 13, 890056. https://doi.org/10.3389/fimmu.2022.890056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haider, K., Rahaman, S., Yar, M. S., & Kamal, A. (2019). Tubulin inhibitors as novel anticancer agents: An overview on patents (2013–2018). Expert Opinion on Therapeutic Patents, 29(8), 623–641. https://doi.org/10.1080/13543776.2019.1648433

    Article  CAS  PubMed  Google Scholar 

  43. Sorensen, J. B. (1992). Vinorelbine. A review of its antitumour activity in lung cancer. Drugs, 44 Suppl 4, 60–65. https://doi.org/10.2165/00003495-199200444-00007. discussion 66-69.

    Article  CAS  PubMed  Google Scholar 

  44. Su, L., Zhang, J., Xu, H., Wang, Y., Chu, Y., Liu, R., & Xiong, S. (2005). Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clinical Cancer Research, 11(23), 8273–8280. https://doi.org/10.1158/1078-0432.CCR-05-0537

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, S. S., Han, Z. P., Jing, Y. Y., Tao, S. F., Li, T. J., Wang, H., Wang, Y., Li, R., Yang, Y., Zhao, X., Xu, X. D., Yu, E. D., Rui, Y. C., Liu, H. J., Zhang, L., & Wei, L. X. (2012). CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Medicine, 10, 85. https://doi.org/10.1186/1741-7015-10-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan, A. B., Lee, S., Harmanci, A. S., Patel, R., Latha, K., Yang, Y., Marisetty, A., Lee, H. K., Heimberger, A. B., Fuller, G. N., Deneen, B., & Rao, G. (2023). CXCR4 expression is associated with proneural-to-mesenchymal transition in glioblastoma. International Journal of Cancer, 152(4), 713–724. https://doi.org/10.1002/ijc.34329

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members from Guoliang Xu laboratory, Jinchuan Hu laboratory and Xinxin Huang laboratory for helpful assistance and discussions.

Funding

This work was supported by General Program of National Natural Science Foundation of China (82070107), The National Excellent Youth Fund of National Natural Science Foundation of China (82222005), and Fudan University Start-up funding to XH, National Youth Fund of National Natural Science Foundation of China (82003079) to NG.

Author information

Authors and Affiliations

Authors

Contributions

NG and XH conceived the project, designed the experiments, interpreted data and wrote the manuscript. NG, ZY, XZ and DX performed the experiments and analyzed the data. HG and MY conceived the research, wrote and edited the manuscript. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Hai Gao, Min Yang or Xinxin Huang.

Ethics declarations

Ethics Approval

All animal experiments followed protocols approved by the Animal Care and Use Committee of Fudan University School of Medicine.

Consent to Participate

Not applicable.

Consent for Publication

All authors consented to publish this paper.

Conflicts of Interest

The authors have declared that no competing interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 895 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, N., Yu, Z., Zeng, X. et al. Nuclear Tubulin Enhances CXCR4 Transcription and Promotes Chemotaxis Through TCF12 Transcription Factor in human Hematopoietic Stem Cells. Stem Cell Rev and Rep 19, 1328–1339 (2023). https://doi.org/10.1007/s12015-023-10543-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10543-z

Keywords

Navigation