Skip to main content

Advertisement

Log in

Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The term “cancer stem cells” (CSCs) refers to cancer cells that exhibit traits parallel to normal stem cells, namely the potential to give rise to every type of cell identified in a tumor microenvironment. It has been found that CSCs usually develops from other neoplastic cells or non-cancerous somatic cells by acquiring stemness and malignant characteristics through particular genetic modifications. A trivial number of CSCs, identified in solid and liquid cancer, can give rise to an entire tumor population with aggressive anticancer drug resistance, metastasis, and invasiveness. Besides, cancer stem cells manipulate their intrinsic and extrinsic features, regulate the metabolic pattern of the cell, adjust efflux-influx efficiency, modulate different signaling pathways, block apoptotic signals, and cause genetic and epigenetic alterations to retain their pluripotency and ability of self-renewal. Notably, to keep the cancer stem cells’ ability to become malignant cells, mesenchymal stem cells, tumor-associated fibroblasts, immune cells, etc., interact with one another. Furthermore, CSCs are characterized by the expression of particular molecular markers that carry significant diagnostic and prognostic significance. Because of this, scientific research on CSCs is becoming increasingly imperative, intending to understand the traits and behavior of cancer stem cells and create more potent anticancer therapeutics to fight cancer at the CSC level. In this review, we aimed to elucidate the critical role of CSCs in the onset and spread of cancer and the characteristics of CSCs that promote severe resistance to targeted therapy.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Dataset used in this study will be available as per request (mailing to the corresponding author).

Code Availability

Not Applicable

References

  1. WHO. (2022). Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.

  2. Nimmakayala, R. K., Batra, S. K., & Ponnusamy, M. P. (2019). Unraveling the journey of cancer stem cells from origin to metastasis. Biochimica et Biophysica Acta - Reviews on Cancer, 1871(1), 50–63.

    CAS  PubMed  Google Scholar 

  3. Zhu, P., & Fan, Z. (2018). Cancer stem cells and tumorigenesis. Biophys Rep, 4(4), 178–188.

    CAS  PubMed  Google Scholar 

  4. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194(4260), 23–28.

    CAS  PubMed  Google Scholar 

  5. Safa, A. R., et al. (2015). Glioblastoma stem cells (GSCs) epigenetic plasticity and interconversion between differentiated non-GSCs and GSCs. Genes & Diseases, 2(2), 152–163.

    Google Scholar 

  6. Chen, W., et al. (2016). Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells International, 2016, 1740936.

    PubMed  PubMed Central  Google Scholar 

  7. Hadjimichael, C., et al. (2015). Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells, 7(9), 1150–1184.

    PubMed  PubMed Central  Google Scholar 

  8. Dontu, G., et al. (2003). Stem cells in normal breast development and breast cancer. Cell Proliferation, 36(Suppl 1), 59–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, K., et al. (2017). WNT/β-catenin directs self-renewal symmetric cell division of hTERT(high) prostate cancer stem cells. Cancer Research, 77(9), 2534–2547.

    CAS  PubMed  Google Scholar 

  10. Clement, V., et al. (2007). HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Current Biology, 17(2), 165–172.

    CAS  PubMed  Google Scholar 

  11. Bradford, G. B., et al. (1997). Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Experimental Hematology, 25(5), 445–453.

    CAS  PubMed  Google Scholar 

  12. Glauche, I., et al. (2009). Stem cell proliferation and quiescence–two sides of the same coin. PLoS Computational Biology, 5(7), e1000447.

    PubMed  PubMed Central  Google Scholar 

  13. Goss, P. E., & Chambers, A. F. (2010). Does tumour dormancy offer a therapeutic target? Nature Reviews Cancer, 10(12), 871–877.

    CAS  PubMed  Google Scholar 

  14. Mohr, M., Zänker, K. S., & Dittmar, T. (2015). Cancer (stem) cell differentiation: An inherent or acquired property? Medical Hypotheses, 85(6), 1012–1018.

    CAS  PubMed  Google Scholar 

  15. Yang, L., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5(1), 8.

    PubMed  PubMed Central  Google Scholar 

  16. Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene, 29(34), 4741–4751.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lobo, N. A., et al. (2007). The biology of cancer stem cells. Annual Review of Cell and Developmental Biology, 23, 675–699.

    CAS  PubMed  Google Scholar 

  18. Lapidot, T., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.

    CAS  PubMed  Google Scholar 

  19. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3(7), 730–737.

    CAS  PubMed  Google Scholar 

  20. Tang, C., Ang, B. T., & Pervaiz, S. (2007). Cancer stem cell: Target for anti-cancer therapy. The FASEB Journal, 21(14), 3777–3785.

    CAS  PubMed  Google Scholar 

  21. Al-Hajj, M., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences, 100(7), 3983–3988.

    CAS  Google Scholar 

  22. Joshua, B., et al. (2012). Frequency of cells expressing CD44, a head and neck cancer stem cell marker: Correlation with tumor aggressiveness. Head and Neck, 34(1), 42–49.

    PubMed  Google Scholar 

  23. O’Brien, C. A., et al. (2007). A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature, 445(7123), 106–110.

    CAS  PubMed  Google Scholar 

  24. Quintana, E., et al. (2008). Efficient tumour formation by single human melanoma cells. Nature, 456(7222), 593–598.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh, S. K., et al. (2004). Identification of human brain tumour initiating cells. Nature, 432(7015), 396–401.

    CAS  PubMed  Google Scholar 

  26. Kong, Y., et al. (2008). CD34+CD38+CD19+ as well as CD34+CD38-CD19+ cells are leukemia-initiating cells with self-renewal capacity in human B-precursor ALL. Leukemia, 22(6), 1207–1213.

    CAS  PubMed  Google Scholar 

  27. Rich, J. N. (2016). Cancer stem cells: Understanding tumor hierarchy and heterogeneity. Medicine (Baltimore), 95(1 Suppl 1), S2-s7.

    CAS  PubMed  Google Scholar 

  28. Ye, F., et al. (2015). The presence of EpCAM(-)/CD49f(+) cells in breast cancer is associated with a poor clinical outcome. Journal of Breast Cancer, 18(3), 242–248.

    PubMed  PubMed Central  Google Scholar 

  29. Yang, L., et al. (2015). LGR5 promotes breast cancer progression and maintains stem-like cells through activation of Wnt/β-catenin signaling. Stem Cells, 33(10), 2913–2924.

    CAS  PubMed  Google Scholar 

  30. Kong, Y., et al. (2018). Breast cancer stem cell markers CD44 and ALDH1A1 in serum: Distribution and prognostic value in patients with primary breast cancer. Journal of Cancer, 9(20), 3728–3735.

    PubMed  PubMed Central  Google Scholar 

  31. Hiraga, T., Ito, S., & Nakamura, H. (2016). EpCAM expression in breast cancer cells is associated with enhanced bone metastasis formation. International Journal of Cancer, 138(7), 1698–1708.

    CAS  PubMed  Google Scholar 

  32. Visvader, J. E., & Lindeman, G. J. (2008). Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nature Reviews Cancer, 8(10), 755–768.

    CAS  PubMed  Google Scholar 

  33. Zheng, Y., et al. (2022). Lung cancer stem cell markers as therapeutic targets: An update on signaling pathways and therapies. Frontiers in Oncology, 12, 873994.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, X., et al. (2013). Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncology Reports, 30(6), 2733–2740.

    CAS  PubMed  Google Scholar 

  35. Sakabe, T., et al. (2017). CD117 expression is a predictive marker for poor prognosis in patients with non-small cell lung cancer. Oncology Letters, 13(5), 3703–3708.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kubo, T., Takigawa, N., Osawa, M., Harada, D., Ninomiya, T., Ochi, N., et al. (2013). Subpopulation of small-cell lung cancer cells expressing CD133 and CD87 show resistance to chemotherapy. Cancer Science, 104(1), 78–84. https://doi.org/10.1111/cas.12045

  37. Eramo, A., et al. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death and Differentiation, 15(3), 504–514.

    CAS  PubMed  Google Scholar 

  38. Zhou, Y., et al. (2018). Cancer stem cells in progression of colorectal cancer. Oncotarget, 9(70), 33403–33415.

    PubMed  Google Scholar 

  39. Fedyanin, M., et al. (2017). Role of stem cells in colorectal cancer progression and prognostic and predictive characteristics of stem cell markers in colorectal cancer. Current Stem Cell Research & Therapy, 12(1), 19–30.

    CAS  Google Scholar 

  40. Tsochantaridis, I., et al. (2023). The concept of cancer stem cells: Elaborating on ALDH1B1 as an emerging marker of cancer progression. Life, 13(1), 197.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sottoriva, A., et al. (2010). Cancer stem cell tumor model reveals invasive morphology and increased phenotypical heterogeneity. Cancer Research, 70(1), 46–56.

    CAS  PubMed  Google Scholar 

  42. Kenny, H. A., et al. (2014). Mesothelial cells promote early ovarian cancer metastasis through fibronectin secretion. The Journal of Clinical Investigation, 124(10), 4614–4628.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lathia, J. D., et al. (2015). Cancer stem cells in glioblastoma. Genes & Development, 29(12), 1203–1217.

    CAS  Google Scholar 

  44. Muto, J., et al. (2012). RNA-binding protein Musashi1 modulates glioma cell growth through the post-transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways. PLoS One, 7(3), e33431.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Read, T. A., et al. (2009). Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell, 15(2), 135–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, X., et al. (2011). A CD133-related gene expression signature identifies an aggressive glioblastoma subtype with excessive mutations. Proceedings of the National Academy of Sciences, 108(4), 1591–1596.

    CAS  Google Scholar 

  47. Kaaijk, P., et al. (1995). Expression of CD44 splice variants in human primary brain tumors. Journal of Neuro-Oncology, 26(3), 185–190.

    CAS  PubMed  Google Scholar 

  48. Bao, S., et al. (2008). Targeting cancer stem cells through L1CAM suppresses glioma growth. Cancer Research, 68(15), 6043–6048.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bao, S., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.

    CAS  PubMed  Google Scholar 

  50. Gao, X., et al. (2012). Acute and fractionated irradiation differentially modulate glioma stem cell division kinetics. Cancer Research, 73(5), 1481–1490.

    PubMed  PubMed Central  Google Scholar 

  51. Monzani, E., et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 43(5), 935–946.

    CAS  PubMed  Google Scholar 

  52. Wilson, B. J., et al. (2014). ABCB5 maintains melanoma-initiating cells through a proinflammatory cytokine signaling circuit. Cancer Research, 74(15), 4196–4207.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Parmiani, G. (2016). Melanoma cancer stem cells: Markers and functions. Cancers (Basel), 8(3).

  54. Klein, W. M., et al. (2007). Increased expression of stem cell markers in malignant melanoma. Modern Pathology, 20(1), 102–107.

    CAS  PubMed  Google Scholar 

  55. Kleffel, S., et al. (2015). Melanoma cell-intrinsic PD-1 receptor functions promote tumor growth. Cell, 162(6), 1242–1256.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schatton, T., et al. (2008). Identification of cells initiating human melanomas. Nature, 451(7176), 345–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, S. S., & Cirillo, N. (2020). The molecular markers of cancer stem cells in head and neck tumors. Journal of Cellular Physiology, 235(1), 65–73.

    CAS  PubMed  Google Scholar 

  58. Krishnamurthy, S., & Nör, J. E. (2012). Head and neck cancer stem cells. Journal of Dental Research, 91(4), 334–340.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Jakob, M., et al. (2021). Role of cancer stem cell markers ALDH1, BCL11B, BMI-1, and CD44 in the prognosis of advanced HNSCC. Strahlentherapie und Onkologie, 197(3), 231–245.

    PubMed  Google Scholar 

  60. Herzog, A. E., et al. (2021). The IL-6R and Bmi-1 axis controls self-renewal and chemoresistance of head and neck cancer stem cells. Cell Death & Disease, 12(11), 988.

    CAS  Google Scholar 

  61. Prince, M. E., et al. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proceedings of the National Academy of Sciences, 104(3), 973–978.

    CAS  Google Scholar 

  62. Kersten, B., et al. (2016). CD45RA, a specific marker for leukaemia stem cell sub-populations in acute myeloid leukaemia. British Journal of Haematology, 173(2), 219–235.

    CAS  PubMed  Google Scholar 

  63. Villatoro, A., et al. (2020). Leukemia stem cell release from the stem cell niche to treat acute myeloid leukemia. Frontiers in Cell and Developmental Biology, 8, 607.

    PubMed  PubMed Central  Google Scholar 

  64. Tavernier, E., et al. (2014). CXCR4: A new therapeutic target of the leukaemic cell? Role of the SDF-1/CXCR4 axis in acute myeloid leukaemia. Bulletin du Cancer, 101(6), 593–604.

    PubMed  Google Scholar 

  65. Marchand, T., & Pinho, S. (2021). Leukemic stem cells: From leukemic niche biology to treatment opportunities. Frontiers in Immunology, 12, 775128.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Haubner, S., et al. (2019). Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia, 33(1), 64–74.

    CAS  PubMed  Google Scholar 

  67. Ding, Y., Gao, H., & Zhang, Q. (2017). The biomarkers of leukemia stem cells in acute myeloid leukemia. Stem Cell Investigation, 4, 19.

    PubMed  PubMed Central  Google Scholar 

  68. Zhang, R., et al. (2020). Co-expression of stem cell and epithelial mesenchymal transition markers in circulating tumor cells of bladder cancer patients. Oncotargets and Therapy, 13, 10739–10748.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, L., et al. (2018). Prognostic implication of urothelial stem cell markers differs according to primary tumour location in non-muscle-invasive bladder cancer. Cellular Physiology and Biochemistry, 48(6), 2364–2373.

    CAS  PubMed  Google Scholar 

  70. Siddiqui, Z., et al. (2020). Synergic effects of cancer stem cells markers, CD44 and embryonic stem cell transcription factor Nanog, on bladder cancer prognosis. British Journal of Biomedical Science, 77(2), 69–75.

    CAS  PubMed  Google Scholar 

  71. Li, Y., et al. (2017). Bladder cancer stem cells: Clonal origin and therapeutic perspectives. Oncotarget, 8(39), 66668–66679.

    PubMed  PubMed Central  Google Scholar 

  72. Abugomaa, A., et al. (2020) Emerging roles of cancer stem cells in bladder cancer progression, tumorigenesis, and resistance to chemotherapy: A potential therapeutic target for bladder cancer. Cells, 9(1).

  73. Wang, B., et al. (2016). LGR5 is a gastric cancer stem cell marker associated with stemness and the EMT signature genes NANOG, NANOGP8, PRRX1, TWIST1, and BMI1. PLoS One, 11(12), e0168904.

    PubMed  PubMed Central  Google Scholar 

  74. Senel, F., et al. (2017). Prognostic value of cancer stem cell markers CD44 and ALDH1/2 in gastric cancer cases. Asian Pacific Journal of Cancer Prevention, 18(9), 2527–2531.

    PubMed  PubMed Central  Google Scholar 

  75. Razmi, M., et al. (2021). Clinical and prognostic significances of cancer stem cell markers in gastric cancer patients: A systematic review and meta-analysis. Cancer Cell International, 21(1), 139.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Nosrati, A., Naghshvar, F., & Khanari, S. (2014). Cancer stem cell markers CD44, CD133 in primary gastric adenocarcinoma. Int J Mol Cell Med, 3(4), 279–286.

    PubMed  PubMed Central  Google Scholar 

  77. Fu, Y., Du, P., Zhao, J., Hu, C., Qin, Y., & Huang, G. (2018). Gastric cancer stem cells: Mechanisms and therapeutic approaches. Yonsei Medical Journal, 59(10), 1150–1158. https://doi.org/10.3349/ymj.2018.59.10.1150

  78. Klemba, A., et al. (2018). Surface markers of cancer stem-like cells of ovarian cancer and their clinical relevance. Contemporary Oncology (Pozn), 22(1a), 48–55.

    Google Scholar 

  79. Ma, S., et al. (2008). Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research, 6(7), 1146–1153.

    CAS  PubMed  Google Scholar 

  80. Sun, J. H., et al. (2016). Liver cancer stem cell markers: Progression and therapeutic implications. World Journal of Gastroenterology, 22(13), 3547–3557.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Qiu, L., et al. (2018). Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC. Oncology Letters, 15(2), 2039–2048.

    PubMed  Google Scholar 

  82. Haraguchi, N., et al. (2010). CD13 is a therapeutic target in human liver cancer stem cells. The Journal of Clinical Investigation, 120(9), 3326–3339.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ohara, Y., et al. (2013). Histological and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) expression in clinical pancreatic cancer. Cancer Science, 104(8), 1127–1134.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Gzil, A., et al. (2019). Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Molecular Biology Reports, 46(6), 6629–6645.

    CAS  PubMed  Google Scholar 

  85. Fitzgerald, T. L., & McCubrey, J. A. (2014). Pancreatic cancer stem cells: Association with cell surface markers, prognosis, resistance, metastasis and treatment. Advances in Biological Regulation, 56, 45–50.

    CAS  PubMed  Google Scholar 

  86. Mondal, S., Bhattacharya, K., & Mandal, C. (2018). Nutritional stress reprograms dedifferention in glioblastoma multiforme driven by PTEN/Wnt/Hedgehog axis: A stochastic model of cancer stem cells. Cell Death Discovery, 4(1), 110.

    PubMed  PubMed Central  Google Scholar 

  87. Sun, X., et al. (2020). Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomedicine & Pharmacotherapy, 130, 110623.

    CAS  Google Scholar 

  88. Hayama, M., et al. (2016). Chemotherapy for patients with advanced lung cancer receiving long-term oxygen therapy. Journal of Thoracic Disease, 8(1), 116–123.

    PubMed  PubMed Central  Google Scholar 

  89. Pistritto, G., et al. (2016). Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 8(4), 603–619.

    CAS  PubMed  Google Scholar 

  90. Wojtkowiak, J. W., et al. (2011). Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Molecular Pharmaceutics, 8(6), 2032–2038.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hagelund, S., & Trauzold, A. (2022). Impact of extracellular pH on apoptotic and non-apoptotic TRAIL-Induced signaling in pancreatic ductal adenocarcinoma cells. Frontiers in Cell and Development Biology, 10, 768579.

    Google Scholar 

  92. Sharma, V., et al. (2015). Low-pH-induced apoptosis: Role of endoplasmic reticulum stress-induced calcium permeability and mitochondria-dependent signaling. Cell Stress and Chaperones, 20(3), 431–440.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Plaks, V., Kong, N., & Werb, Z. (2015). The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell, 16(3), 225–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Puca, F., et al. (2022). Role of diet in stem and cancer stem cells. International Journal of Molecular Sciences, 23(15).

  95. Smith, A. G., & Macleod, K. F. (2019). Autophagy, cancer stem cells and drug resistance. The Journal of Pathology, 247(5), 708–718.

    PubMed  Google Scholar 

  96. Tomasetti, C., & Vogelstein, B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 347(6217), 78–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. White, A. C., & Lowry, W. E. (2015). Refining the role for adult stem cells as cancer cells of origin. Trends in Cell Biology, 25(1), 11–20.

    CAS  PubMed  Google Scholar 

  98. Beck, B., & Blanpain, C. (2013). Unravelling cancer stem cell potential. Nature Reviews Cancer, 13(10), 727–738.

    CAS  PubMed  Google Scholar 

  99. Bjerkvig, R., et al. (2005). Opinion: The origin of the cancer stem cell: Current controversies and new insights. Nature Reviews Cancer, 5(11), 899–904.

    CAS  PubMed  Google Scholar 

  100. Lau, E. Y., Ho, N. P., & Lee, T. K. (2017). Cancer stem cells and their microenvironment: Biology and therapeutic implications. Stem Cells Int, 2017, 3714190.

    PubMed  PubMed Central  Google Scholar 

  101. Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    CAS  PubMed  Google Scholar 

  102. Batlle, E., & Clevers, H. (2017). Cancer stem cells revisited. Nature Medicine, 23(10), 1124–1134. https://doi.org/10.1038/nm.4409

  103. Valent, P., et al. (2012). Cancer stem cell definitions and terminology: The devil is in the details. Nature Reviews Cancer, 12(11), 767–775.

    CAS  PubMed  Google Scholar 

  104. Cox, C. V., et al. (2004). Characterization of acute lymphoblastic leukemia progenitor cells. Blood, 104(9), 2919–2925.

    CAS  PubMed  Google Scholar 

  105. Al-Mawali, A., Gillis, D., & Lewis, I. (2016). Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. Journal of Hematology & Oncology, 9(1), 61.

    Google Scholar 

  106. Kikushige, Y., & Miyamoto, T. (2015). Identification of TIM-3 as a leukemic stem cell surface molecule in primary acute myeloid leukemia. Oncology, 89(Suppl 1), 28–32.

    PubMed  Google Scholar 

  107. Sun, Q., et al. (2008). Functional alterations of Lin-CD34+CD38+ cells in chronic myelomonocytic leukemia and on progression to acute leukemia. Research, 32(9), 1374–1381.

    CAS  Google Scholar 

  108. Tavor, S., et al. (2004). CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Research, 64(8), 2817–2824.

    CAS  PubMed  Google Scholar 

  109. Luo, Y., et al. (2012). ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells, 30(10), 2100–2113.

    CAS  PubMed  Google Scholar 

  110. Fusi, A., et al. (2011). Expression of the stem cell markers nestin and CD133 on circulating melanoma cells. The Journal of Investigative Dermatology, 131(2), 487–494.

    CAS  PubMed  Google Scholar 

  111. Boiko, A. D., et al. (2010). Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature, 466(7302), 133–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang, D., et al. (2005). A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Research, 65(20), 9328–9337.

    CAS  PubMed  Google Scholar 

  113. Liu, S., et al. (2014). Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports, 2(1), 78–91.

    CAS  PubMed  Google Scholar 

  114. Duru, N., et al. (2016). Characterization of the CD49f+/CD44+/CD24- single-cell derived stem cell population in basal-like DCIS cells. Oncotarget, 7(30), 47511–47525.

    PubMed  PubMed Central  Google Scholar 

  115. Li, C., et al. (2016). GALNT1-mediated glycosylation and activation of sonic hedgehog signaling maintains the self-renewal and tumor-initiating capacity of bladder cancer stem cells. Cancer Research, 76(5), 1273–1283.

    CAS  PubMed  Google Scholar 

  116. Huang, P., et al. (2013). Cancer stem cell-like characteristics of a CD133(+) subpopulation in the J82 human bladder cancer cell line. Molecular and Clinical Oncology, 1(1), 180–184.

    PubMed  Google Scholar 

  117. Li, X. B., et al. (2016). Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice. Cell Research, 26(7), 838–849.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Brungs, D., et al. (2016). Gastric cancer stem cells: Evidence, potential markers, and clinical implications. Journal of Gastroenterology, 51(4), 313–326.

    CAS  PubMed  Google Scholar 

  119. Wu, W., et al. (2016). Co-expression of Lgr5 and CXCR4 characterizes cancer stem-like cells of colorectal cancer. Oncotarget, 7(49), 81144–81155.

    PubMed  PubMed Central  Google Scholar 

  120. Zhang, S. S., Han, Z. P., Jing, Y. Y., Tao, S. F., Li, T. J., Wang, H., et al. (2012). CD133(+)CXCR4(+) colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Medicine, 10, 85. https://doi.org/10.1186/1741-7015-10-85

  121. Conic, I., Stanojevic, Z., Jankovic Velickovic, L., Stojnev, S., Ristic Petrovic, A., Krstic, M., et al. (2015) Epithelial ovarian cancer with CD117 phenotype is highly aggressive and resistant to chemotherapy. The Journal of Obstetrics and Gynaecology Research, 41(10), 1630–1637. https://doi.org/10.1111/jog.12758

  122. Bhaijee, F., et al. (2012). Cancer stem cells in head and neck squamous cell carcinoma: A review of current knowledge and future applications. Head and Neck, 34(6), 894–899.

    PubMed  Google Scholar 

  123. Jung, Y. S., et al. (2015). CD200: Association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head and Neck, 37(3), 327–335.

    PubMed  Google Scholar 

  124. Rozeik, M. S., et al. (2017). Evaluation of CD44 and CD133 as markers of liver cancer stem cells in Egyptian patients with HCV-induced chronic liver diseases versus hepatocellular carcinoma. Electronic Physician, 9(7), 4708–4717.

    PubMed  PubMed Central  Google Scholar 

  125. Yang, Z. F., et al. (2008). Significance of CD90+ cancer stem cells in human liver cancer. Cell, 13(2), 153–166.

    CAS  Google Scholar 

  126. Okudela, K., et al. (2012). Expression of the potential cancer stem cell markers, CD133, CD44, ALDH1, and β-catenin, in primary lung adenocarcinoma–their prognostic significance. Pathology International, 62(12), 792–801.

    CAS  PubMed  Google Scholar 

  127. Vaz, A. P., et al. (2014). A concise review on the current understanding of pancreatic cancer stem cells. Journal of Cancer Stem Cell Research, 2.

  128. Hermann, P. C., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    CAS  PubMed  Google Scholar 

  129. Miranda-Lorenzo, I., et al. (2014). Intracellular autofluorescence: A biomarker for epithelial cancer stem cells. Nature Methods, 11(11), 1161–1169.

    CAS  PubMed  Google Scholar 

  130. Kim, N., et al. (2015). Cancer stem cell markers in eyelid sebaceous gland carcinoma: High expression of ALDH1, CD133, and ABCG2 correlates with poor prognosis. Investigative Ophthalmology & Visual Science, 56(3), 1813–1819.

    CAS  Google Scholar 

  131. Yanamoto, S., et al. (2014). Expression of the cancer stem cell markers CD44v6 and ABCG2 in tongue cancer: Effect of neoadjuvant chemotherapy on local recurrence. International Journal of Oncology, 44(4), 1153–1162.

    CAS  PubMed  Google Scholar 

  132. Nagata, T., et al. (2011). Expression of cancer stem cell markers CD133 and CD44 in locoregional recurrence of rectal cancer. Anticancer Research, 31(2), 495–500.

    CAS  PubMed  Google Scholar 

  133. Elbasateeny, S. S., et al. (2016). Immunohistochemical expression of cancer stem cell related markers CD44 and CD133 in endometrial cancer. Pathology, Research and Practice, 212(1), 10–16.

    CAS  PubMed  Google Scholar 

  134. Bi, Y., et al. (2016). Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. Journal of Surgical Oncology, 113(2), 144–151.

    CAS  PubMed  Google Scholar 

  135. Lukenda, A., et al. (2016). Expression and prognostic value of putative cancer stem cell markers CD117 and CD15 in choroidal and ciliary body melanoma. Journal of Clinical Pathology, 69(3), 234–239.

    CAS  PubMed  Google Scholar 

  136. Tysnes, B. B., & Bjerkvig, R. (2007). Cancer initiation and progression: Involvement of stem cells and the microenvironment. Biochimica et Biophysica Acta, 1775(2), 283–297.

    CAS  PubMed  Google Scholar 

  137. Zhou, B. B., et al. (2009). Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 8(10), 806–823.

    CAS  PubMed  Google Scholar 

  138. Thanan, R., et al. (2013). Inflammation-related DNA damage and expression of CD133 and Oct3/4 in cholangiocarcinoma patients with poor prognosis. Free Radical Biology & Medicine, 65, 1464–1472.

    CAS  Google Scholar 

  139. Li, C., et al. (2017). CD54-NOTCH1 axis controls tumor initiation and cancer stem cell functions in human prostate cancer. Theranostics, 7(1), 67–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhao, J. (2016). Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacology & Therapeutics, 160, 145–158.

    CAS  Google Scholar 

  141. Chen, X., et al. (2017). Induced cancer stem cells generated by radiochemotherapy and their therapeutic implications. Oncotarget, 8(10), 17301–17312.

    PubMed  Google Scholar 

  142. Boumahdi, S., et al. (2014). SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature, 511(7508), 246–250.

    CAS  PubMed  Google Scholar 

  143. Lu, H., Ouyang, W., & Huang, C. (2006). Inflammation, a key event in cancer development. Molecular Cancer Research, 4(4), 221–233.

    PubMed  Google Scholar 

  144. Okada, F. (2002). Inflammation and free radicals in tumor development and progression. Redox Report, 7(6), 357–368.

    CAS  PubMed  Google Scholar 

  145. Ohnishi, S., et al. (2013). DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxidative Medicine and Cellular Longevity, 2013, 387014.

    PubMed  PubMed Central  Google Scholar 

  146. Jing, Y., et al. (2012). Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One, 7(8), e43272.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Ma, N., et al. (2011). Nitrative DNA damage and Oct3/4 expression in urinary bladder cancer with Schistosoma haematobium infection. Biochemical and Biophysical Research Communications, 414(2), 344–349.

    CAS  PubMed  Google Scholar 

  148. Thanan, R., et al. (2012). Nuclear localization of COX-2 in relation to the expression of stemness markers in urinary bladder cancer. Mediators of Inflammation, 2012, 165879.

    PubMed  PubMed Central  Google Scholar 

  149. Logan, C. M., et al. (2007). Prostaglandin E2: At the crossroads between stem cell development, inflammation and cancer. Cancer Biology & Therapy, 6(10), 1517–1520.

    CAS  Google Scholar 

  150. Kawanishi, S., Hiraku, Y., & Oikawa, S. (2001). Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutation Research, 488(1), 65–76.

    CAS  PubMed  Google Scholar 

  151. Cabarcas, S. M., Mathews, L. A., & Farrar, W. L. (2011). The cancer stem cell niche–there goes the neighborhood? International Journal of Cancer, 129(10), 2315–2327.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee, G., Hall, R. R. 3rd, & Ahmed A. U. (2016). Cancer stem cells: Cellular plasticity, niche, and its clinical relevance. Journal of Stem Cell Research & Therapy, 6(10).

  153. Quante, M., et al. (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2), 257–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews Cancer, 16(9), 582–598.

    CAS  PubMed  Google Scholar 

  155. Kitamura, T., Qian, B. Z., & Pollard, J. W. (2015). Immune cell promotion of metastasis. Nature Reviews Immunology, 15(2), 73–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Carnero, A., & Lleonart, M. (2016). The hypoxic microenvironment: A determinant of cancer stem cell evolution. BioEssays, 38(Suppl 1), S65-74.

    PubMed  Google Scholar 

  157. Azuma, T., et al. (2008). B7–H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood, 111(7), 3635–3643.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bennewith, K. L., & Durand, R. E. (2004). Quantifying transient hypoxia in human tumor xenografts by flow cytometry. Cancer Research, 64(17), 6183–6189.

    CAS  PubMed  Google Scholar 

  159. Brurberg, K. G., et al. (2006). Fluctuations in pO2 in irradiated human melanoma xenografts. Radiation Research, 165(1), 16–25.

    CAS  PubMed  Google Scholar 

  160. Gilbertson, R. J., & Rich, J. N. (2007). Making a tumour’s bed: Glioblastoma stem cells and the vascular niche. Nature Reviews Cancer, 7(10), 733–736.

    CAS  PubMed  Google Scholar 

  161. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: Role of the HIF system. Nature Medicine, 9(6), 677–684.

    CAS  PubMed  Google Scholar 

  162. Ricciuti, B., et al. (2019). Enzymes involved in tumor-driven angiogenesis: A valuable target for anticancer therapy. Seminars in Cancer Biology, 56, 87–99.

    CAS  PubMed  Google Scholar 

  163. Folkins, C., et al. (2009). Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Research, 69(18), 7243–7251.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bhowmick, N. A., Neilson, E. G., & Moses, H. L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432(7015), 332–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Crawford, Y., & Ferrara, N. (2009). Tumor and stromal pathways mediating refractoriness/resistance to anti-angiogenic therapies. Trends in Pharmacological Sciences, 30(12), 624–630.

    CAS  PubMed  Google Scholar 

  166. Owen, J. L., & Mohamadzadeh, M. (2013). Macrophages and chemokines as mediators of angiogenesis. Frontiers in Physiology, 4, 159.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Maniotis, A. J., et al. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. American Journal of Pathology, 155(3), 739–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yao, X. H., Ping, Y. F., & Bian, X. W. (2011). Contribution of cancer stem cells to tumor vasculogenic mimicry. Protein & Cell, 2(4), 266–272.

    Google Scholar 

  169. Weis, S. M., & Cheresh, D. A. (2011). Tumor angiogenesis: Molecular pathways and therapeutic targets. Nature Medicine, 17(11), 1359–1370.

    CAS  PubMed  Google Scholar 

  170. Bissell, M. J. (1999). Tumor plasticity allows vasculogenic mimicry, a novel form of angiogenic switch. A rose by any other name? The American Journal of Pathology, 155(3), 675–9.

  171. Fausto, N. (2000). Vasculogenic mimicry in tumors. Fact or artifact? The American Journal of Pathology, 156(2), 359.

  172. Folberg, R., Hendrix, M. J., & Maniotis, A. J. (2000). Vasculogenic mimicry and tumor angiogenesis. American Journal of Pathology, 156(2), 361–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. McDonald, D. M., Munn, L., & Jain, R. K. (2000). Vasculogenic mimicry: How convincing, how novel, and how significant? American Journal of Pathology, 156(2), 383–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Shubik, P., & Warren, B. A. (2000). Additional literature on “vasculogenic mimicry” not cited. American Journal of Pathology, 156(2), 736.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Treps, L., Faure, S., & Clere, N. (2021). Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacology & Therapeutics, 223, 107805.

    CAS  Google Scholar 

  176. Bussolati, B., et al. (2009). Endothelial cell differentiation of human breast tumour stem/progenitor cells. Journal of Cellular and Molecular Medicine, 13(2), 309–319.

    CAS  PubMed  Google Scholar 

  177. Ricci-Vitiani, L., et al. (2010). Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature, 468(7325), 824–828.

    CAS  PubMed  Google Scholar 

  178. Soda, Y., et al. (2011). Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A, 108(11), 4274–4280.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Wang, R., et al. (2010). Glioblastoma stem-like cells give rise to tumour endothelium. Nature, 468(7325), 829–833.

    CAS  PubMed  Google Scholar 

  180. Gregory, P. A., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10(5), 593–601.

    CAS  PubMed  Google Scholar 

  181. Hwang, W. L., et al. (2014). MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nature Cell Biology, 16(3), 268–280.

    CAS  PubMed  Google Scholar 

  182. Wang, X., et al. (2013). Krüppel-like factor 8 promotes tumorigenic mammary stem cell induction by targeting miR-146a. American Journal of Cancer Research, 3(4), 356–373.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Mani, S. A., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Morel, A. P., et al. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3(8), e2888.

    PubMed  PubMed Central  Google Scholar 

  185. DiMeo, T. A., et al. (2009). A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Research, 69(13), 5364–5373.

    CAS  Google Scholar 

  186. Brabletz, T., et al. (2005). Opinion: Migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5(9), 744–749.

    CAS  PubMed  Google Scholar 

  187. Masui, T., et al. (2014). Snail-induced epithelial-mesenchymal transition promotes cancer stem cell-like phenotype in head and neck cancer cells. International Journal of Oncology, 44(3), 693–699.

    CAS  PubMed  Google Scholar 

  188. Li, J., et al. (2015). Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor β signaling in HCT116 colon cancer cells. Molecular Medicine Reports, 12(1), 192–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Tu, C. C., et al. (2013). Activation of snail and EMT-like signaling via the IKKαβ/NF-κB pathway in Apicidin-resistant HA22T hepatocellular carcinoma cells. Chinese Journal of Physiology, 56(6), 326–333.

    CAS  PubMed  Google Scholar 

  190. Wang, Z., et al. (2009). Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Research, 69(6), 2400–2407.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Blick, T., et al. (2010). Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of Mammary Gland Biology and Neoplasia, 15(2), 235–252.

    PubMed  Google Scholar 

  192. Hollier, B. G., Evans, K., & Mani, S. A. (2009). The epithelial-to-mesenchymal transition and cancer stem cells: A coalition against cancer therapies. Journal of Mammary Gland Biology and Neoplasia, 14(1), 29–43.

    PubMed  Google Scholar 

  193. Radisky, D. C., & LaBarge, M. A. (2008). Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell, 2(6), 511–512.

    CAS  PubMed  Google Scholar 

  194. Rho, J. K., et al. (2009). Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer, 63(2), 219–226.

    PubMed  Google Scholar 

  195. Yauch, R. L., Januario, T., Eberhard, D. A., Cavet, G., Zhu, W., Fu, L., et al. (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clinical Cancer Research, 11(24 Pt 1), 8686–8698. https://doi.org/10.1158/1078-0432.Ccr-05-1492

  196. Frederick, B. A., et al. (2007). Epithelial to mesenchymal transition predicts gefitinib resistance in cell lines of head and neck squamous cell carcinoma and non-small cell lung carcinoma. Molecular Cancer Therapeutics, 6(6), 1683–1691.

    CAS  PubMed  Google Scholar 

  197. Fuchs, B. C., et al. (2008). Epithelial-to-mesenchymal transition and integrin-linked kinase mediate sensitivity to epidermal growth factor receptor inhibition in human hepatoma cells. Cancer Research, 68(7), 2391–2399.

    CAS  PubMed  Google Scholar 

  198. Shah, A. N., et al. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of Surgical Oncology, 14(12), 3629–3637.

    PubMed  Google Scholar 

  199. Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: Mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.

    CAS  PubMed  Google Scholar 

  200. Wang, Z., et al. (2011). Pancreatic cancer: Understanding and overcoming chemoresistance. Nature Reviews Gastroenterology & Hepatology, 8(1), 27–33.

    CAS  Google Scholar 

  201. Sabbah, M., et al. (2008). Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resistance Updates, 11(4–5), 123–151.

    CAS  PubMed  Google Scholar 

  202. Arumugam, T., et al. (2009). Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Research, 69(14), 5820–5828.

    CAS  Google Scholar 

  203. Hiscox, S., et al. (2006). Tamoxifen resistance in MCF7 cells promotes EMT-like behaviour and involves modulation of beta-catenin phosphorylation. International Journal of Cancer, 118(2), 290–301.

    CAS  PubMed  Google Scholar 

  204. Kajiyama, H., et al. (2007). Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. International Journal of Oncology, 31(2), 277–283.

    CAS  PubMed  Google Scholar 

  205. Kim, M. R., et al. (2009). Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Science, 100(10), 1834–1841.

    CAS  PubMed  Google Scholar 

  206. Konecny, G. E., et al. (2008). Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells. British Journal of Cancer, 98(6), 1076–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Yang, A. D., Fan, F., Camp, E. R., van Buren, G., Liu, W., Somcio, R., et al. (2006). Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. Clinical Cancer Research, 12(14 Pt 1), 4147–4153. https://doi.org/10.1158/1078-0432.Ccr-06-0038

  208. Fidler, I. J., & Poste, G. (2008) The “seed and soil” hypothesis revisited. The Lancet Oncology, 9(8), 808. https://doi.org/10.1016/s1470-2045(08)70201-8

  209. Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis (Review). International Journal of Oncology, 44(6), 1806–1812.

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Bernards, R., & Weinberg, R. A. (2002). A progression puzzle. Nature, 418(6900), 823.

    CAS  PubMed  Google Scholar 

  211. Hanniford, D., et al. (2015). A miRNA-based signature detected in primary melanoma tissue predicts development of brain metastasis. Clinical Cancer Research, 21(21), 4903–4912.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Hunter, K., Welch, D. R., & Liu, E. T. (2003). Genetic background is an important determinant of metastatic potential. Nature Genetics, 34(1), 23–4; author reply 25.

  213. Riester, M., et al. (2017). Distance in cancer gene expression from stem cells predicts patient survival. PLoS One, 12(3), e0173589.

    PubMed  PubMed Central  Google Scholar 

  214. Hermann, P. C., & Heeschen, C. (2013). Metastatic cancer stem cells–quo vadis? Clinical Chemistry, 59(8), 1268–1269.

    CAS  PubMed  Google Scholar 

  215. Lawson, D. A., et al. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Smith, B. A., et al. (2015). A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proceedings of the National Academy of Sciences, 112(47), E6544–E6552.

    CAS  Google Scholar 

  217. Psaila, B., & Lyden, D. (2009). The metastatic niche: Adapting the foreign soil. Nature Reviews Cancer, 9(4), 285–293.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Sceneay, J., Smyth, M. J., & Möller, A. (2013). The pre-metastatic niche: Finding common ground. Cancer and Metastasis Reviews, 32(3–4), 449–464.

    CAS  PubMed  Google Scholar 

  219. Nomura, A., et al. (2015). CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget, 6(10), 8313–8322.

    PubMed  PubMed Central  Google Scholar 

  220. Sampieri, K., & Fodde, R. (2012). Cancer stem cells and metastasis. Seminars in Cancer Biology, 22(3), 187–193.

    CAS  PubMed  Google Scholar 

  221. Gao, W., et al. (2013). Isolation and phenotypic characterization of colorectal cancer stem cells with organ-specific metastatic potential. Gastroenterology, 145(3), 636–46.e5.

    CAS  PubMed  Google Scholar 

  222. Hu, J., et al. (2017). A CD44v(+) subpopulation of breast cancer stem-like cells with enhanced lung metastasis capacity. Cell Death & Disease, 8(3), e2679.

    CAS  Google Scholar 

  223. Gammon, L., et al. (2013). Sub-sets of cancer stem cells differ intrinsically in their patterns of oxygen metabolism. PLoS One, 8(4), e62493.

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Reichert, M., et al. (2018). Regulation of epithelial plasticity determines metastatic organotropism in pancreatic cancer. Developmental Cell, 45(6), 696-711.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Grange, C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71(15), 5346–5356.

    CAS  PubMed  Google Scholar 

  226. Peinado, H., et al. (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine, 18(6), 883–891.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Costa-Silva, B., et al. (2015). Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nature Cell Biology, 17(6), 816–826.

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Adorno-Cruz, V., et al. (2015). Cancer stem cells: Targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Research, 75(6), 924–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. da Silva-Diz, V., et al. (2018). Cancer cell plasticity: Impact on tumor progression and therapy response. Seminars in Cancer Biology, 53, 48–58.

    PubMed  Google Scholar 

  230. Foo, J., & Michor, F. (2014). Evolution of acquired resistance to anti-cancer therapy. Journal of Theoretical Biology, 355, 10–20.

    PubMed  Google Scholar 

  231. Khan, I. N., et al. (2015). Cancer stem cells: A challenging paradigm for designing targeted drug therapies. Drug Discovery Today, 20(10), 1205–1216.

    CAS  PubMed  Google Scholar 

  232. Sørensen, M. D., et al. (2015). Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma. Advances in Experimental Medicine and Biology, 853, 111–138.

    PubMed  Google Scholar 

  233. Fulda, S. (2015). Targeting apoptosis for anticancer therapy. Seminars in Cancer Biology, 31, 84–88.

    CAS  PubMed  Google Scholar 

  234. Koff, J. L., Ramachandiran, S., & Bernal-Mizrachi, L. (2015). A time to kill: Targeting apoptosis in cancer. International Journal of Molecular Sciences, 16(2), 2942–2955.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Xu, X., et al. (2015). Aldehyde dehydrogenases and cancer stem cells. Cancer Letters, 369(1), 50–57.

    CAS  PubMed  Google Scholar 

  236. An, Y., & Ongkeko, W. M. (2009). ABCG2: The key to chemoresistance in cancer stem cells? Expert Opinion on Drug Metabolism & Toxicology, 5(12), 1529–1542.

    CAS  Google Scholar 

  237. Dean, M. (2009). ABC transporters, drug resistance, and cancer stem cells. Journal of Mammary Gland Biology and Neoplasia, 14(1), 3–9.

    PubMed  Google Scholar 

  238. Xu, F., et al. (2014). Differential drug resistance acquisition to doxorubicin and paclitaxel in breast cancer cells. Cancer Cell International, 14(1), 142.

    PubMed  PubMed Central  Google Scholar 

  239. Wang, Y. H., & Scadden, D. T. (2015). Harnessing the apoptotic programs in cancer stem-like cells. EMBO Reports, 16(9), 1084–1098.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Ramasamy, T. S., et al. (2015). Targeting colorectal cancer stem cells using curcumin and curcumin analogues: Insights into the mechanism of the therapeutic efficacy. Cancer Cell International, 15, 96.

    PubMed  PubMed Central  Google Scholar 

  241. Todaro, M., et al. (2010). Colon cancer stem cells: Promise of targeted therapy. Gastroenterology, 138(6), 2151–2162.

    CAS  PubMed  Google Scholar 

  242. Li, X., et al. (2019). Autophagy: A novel mechanism of chemoresistance in cancers. Biomedicine & Pharmacotherapy, 119, 109415.

    CAS  Google Scholar 

  243. Sui, X., et al. (2013). Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death & Disease, 4(10), e838.

    CAS  Google Scholar 

  244. Yun, C. W., & Lee, S. H. (2018) The roles of autophagy in cancer. International Journal of Molecular Sciences, 19(11). https://doi.org/10.3390/ijms19113466

  245. Ashrafizadeh, M., et al. (2020). Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytotherapy Research, 34(5), 911–923.

    CAS  PubMed  Google Scholar 

  246. Janser, F. A., Tschan, M. P., & Langer, R. (2019). The role of autophagy in HER2-targeted therapy. Swiss Medical Weekly, 149, w20138.

    CAS  PubMed  Google Scholar 

  247. Chang, H., & Zou, Z. (2020). Targeting autophagy to overcome drug resistance: Further developments. Journal of Hematology & Oncology, 13(1), 159.

    Google Scholar 

  248. Liu, F., et al. (2013). Effect of autophagy inhibition on chemotherapy-induced apoptosis in A549 lung cancer cells. Oncology Letters, 5(4), 1261–1265.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Luo, M., & Wicha, M. S. (2019). Targeting cancer stem cell redox metabolism to enhance therapy responses. Seminars in Radiation Oncology, 29(1), 42–54.

    PubMed  PubMed Central  Google Scholar 

  250. Snyder, V., et al. (2018). Cancer stem cell metabolism and potential therapeutic targets. Frontiers in Oncology, 8, 203.

    PubMed  PubMed Central  Google Scholar 

  251. Colak, S., & Medema, J. P. (2014). Cancer stem cells–important players in tumor therapy resistance. FEBS Journal, 281(21), 4779–4791.

    CAS  PubMed  Google Scholar 

  252. Macha, M. A., et al. (2017). Afatinib radiosensitizes head and neck squamous cell carcinoma cells by targeting cancer stem cells. Oncotarget, 8(13), 20961–20973.

    PubMed  PubMed Central  Google Scholar 

  253. Somasagara, R. R., et al. (2017). RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene, 36(48), 6680–6690.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Steinbichler, T. B., et al. (2018). Therapy resistance mediated by cancer stem cells. Seminars in Cancer Biology, 53, 156–167.

    CAS  PubMed  Google Scholar 

  255. Najafi, M., Farhood, B., & Mortezaee, K. (2019). Cancer stem cells (CSCs) in cancer progression and therapy. Journal of Cellular Physiology, 234(6), 8381–8395.

    CAS  PubMed  Google Scholar 

  256. Prieto-Vila, M., et al. (2017). Drug resistance driven by cancer stem cells and their niche. International Journal of Molecular Sciences, 18(12).

  257. Yeldag, G., Rice, A., & Del Río Hernández, A. (2018). Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel), 10(12).

  258. Lee, H. H., Bellat, V., & Law, B. (2017). Chemotherapy induces adaptive drug resistance and metastatic potentials via phenotypic CXCR4-expressing cell state transition in ovarian cancer. PLoS One, 12(2), e0171044.

    PubMed  PubMed Central  Google Scholar 

  259. Hu, X., et al. (2012). Induction of cancer cell stemness by chemotherapy. Cell Cycle, 11(14), 2691–2698.

    CAS  PubMed  Google Scholar 

  260. He, K., et al. (2014). Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem-like phenotype through modulation of the PI3K/Akt/β-catenin/CBP pathway. International Journal of Cancer, 134(1), 43–54.

    PubMed  Google Scholar 

  261. Goldman, A., et al. (2015). Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition. Nature Communications, 6, 6139.

    CAS  PubMed  Google Scholar 

  262. Sharma, S. V., Lee, D. Y., Li, B., Quinlan, M. P., Takahashi, F., Maheswaran, S., et al. (2010). A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 141(1), 69–80. https://doi.org/10.1016/j.cell.2010.02.027

  263. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

    CAS  PubMed  Google Scholar 

  264. Aguilar, E., et al. (2016). Metabolic reprogramming and dependencies associated with epithelial cancer stem cells independent of the epithelial-mesenchymal transition program. Stem Cells, 34(5), 1163–1176.

    CAS  PubMed  Google Scholar 

  265. Liu, P. P., et al. (2014). Metabolic regulation of cancer cell side population by glucose through activation of the Akt pathway. Cell Death and Differentiation, 21(1), 124–135.

    PubMed  Google Scholar 

  266. Palorini, R., et al. (2014). Energy metabolism characterization of a novel cancer stem cell-like line 3AB-OS. Journal of Cellular Biochemistry, 115(2), 368–379.

    CAS  PubMed  Google Scholar 

  267. Bayat Mokhtari, R., et al. (2017). Combination therapy in combating cancer. Oncotarget, 8(23), 38022–38043.

    PubMed  Google Scholar 

  268. Agliano, A., Calvo, A., & Box, C. (2017). The challenge of targeting cancer stem cells to halt metastasis. Seminars in Cancer Biology, 44, 25–42.

    CAS  PubMed  Google Scholar 

  269. Caras, I. W. (2020). Two cancer stem cell-targeted therapies in clinical trials as viewed from the standpoint of the cancer stem cell model. Stem Cells Translational Medicine, 9(8), 821–826.

    PubMed  PubMed Central  Google Scholar 

  270. Sikic, B. I., et al. (2019). First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. Journal of Clinical Oncology, 37(12), 946–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Hasan, M. K., et al. (2018). Wnt5a induces ROR1 to recruit DOCK2 to activate Rac1/2 in chronic lymphocytic leukemia. Blood, 132(2), 170–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Choi, M. Y., et al. (2018). Phase I trial: Cirmtuzumab inhibits ROR1 signaling and stemness signatures in patients with chronic lymphocytic leukemia. Cell Stem Cell, 22(6), 951-959.e3.

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Fisher, R., Pusztai, L., & Swanton, C. (2013). Cancer heterogeneity: Implications for targeted therapeutics. British Journal of Cancer, 108(3), 479–485.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YK and ZM conceived the study. TN, ZM, RKM, and YK designed the study, contributed to the writing, preparing the tables and figures. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yearul Kabir.

Ethics declarations

Ethics Approval

Not Applicable

Consent to Participate

Not Applicable.

Consent for Publication

All authors have approved the final version of the manuscript and agreed for the publication.

Conflicts of Interest/Competing Interests

The authors report no competing interests. The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tahsin Nairuz and Zimam Mahmud contributed equally and would be recognized as co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nairuz, T., Mahmud, Z., Manik, R.K. et al. Cancer stem cells: an insight into the development of metastatic tumors and therapy resistance. Stem Cell Rev and Rep 19, 1577–1595 (2023). https://doi.org/10.1007/s12015-023-10529-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-023-10529-x

Keywords

Navigation