Skip to main content
Log in

Gastruloids: A Novel System for Disease Modelling and Drug Testing

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

By virtue of its inaccessible nature, mammalian implantation stage development has remained one of the most enigmatic and hard to investigate periods of embryogenesis. Derived from pluripotent stem cells, gastruloids recapitulate key aspects of gastrula-stage embryos and have emerged as a powerful in vitro tool to study the architectural features of early post-implantation embryos. While the majority of the work in this emerging field has focused on the use of gastruloids to model embryogenesis, their tractable nature and suitability for high-throughput scaling, has presented an unprecedented opportunity to investigate both developmental and environmental aberrations to the embryo as they occur in vitro. This review summarises the recent developments in the use of gastruloids to model congenital anomalies, their usage in teratogenicity testing, and the current limitations of this emerging field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All data as part of this study are included in this published article.

Code Availability

Not applicable.

References

  1. Macklon, N. S., et al. (2002). Conception to ongoing pregnancy: the ‘black box’ of early pregnancy loss. Human Reproduction Update, 8(4), 333–343

    Article  CAS  Google Scholar 

  2. Jenkinson, E. J., & Wilson, I. B. (1970). In vitro support system for the study of blastocyst differentiation in the mouse. Nature, 228(5273), 776–778

    Article  CAS  Google Scholar 

  3. Hsu, Y. C. (1971). Post-blastocyst differentiation in vitro. Nature, 231(5298), 100–102

    Article  CAS  Google Scholar 

  4. Hsu, Y. C. (1972). Differentiation in vitro of mouse embryos beyond the implantation stage. Nature, 239(5369), 200–202

    Article  CAS  Google Scholar 

  5. Pienkowski, M., et al. (1974). Early mouse embryos: growth and differentiation in vitro. Experimental Cell Research, 85(2), 424–428

    Article  CAS  Google Scholar 

  6. Wilson, I. B., & Jenkinson, E. J. (1974). Blastocyst differentiation in vitro. J Reprod Fertil, 39(1), 243–249

    Article  CAS  Google Scholar 

  7. Wiley, L. M., & Pedersen, R. A. (1977). Morphology of mouse egg cylinder development in vitro: a light and electron microscopic study. Journal Of Experimental Zoology, 200(3), 389–402

    Article  CAS  Google Scholar 

  8. Copp, A. J. (1981). The mechanism of mouse egg-cylinder morphogenesis in vitro. Journal Of Embryology And Experimental Morphology, 61, 277–287

    CAS  Google Scholar 

  9. Li, S., et al. (2003). The role of laminin in embryonic cell polarization and tissue organization. Developmental Cell, 4(5), 613–624

    Article  CAS  Google Scholar 

  10. Bedzhov, I., et al. (2014). In vitro culture of mouse blastocysts beyond the implantation stages. Nature Protocols, 9(12), 2732–2739

    Article  CAS  Google Scholar 

  11. Bedzhov, I., & Zernicka-Goetz, M. (2014). Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell, 156(5), 1032–1044

    Article  CAS  Google Scholar 

  12. Morris, S. A., et al. (2012). Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nature Communications, 3, 673

    Article  Google Scholar 

  13. van den Brink, S. C., et al. (2014). Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development, 141(22), 4231–4242

    Article  Google Scholar 

  14. Turner, D. A., et al. (2017). Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development, 144(21), 3894–3906

    CAS  Google Scholar 

  15. Beccari, L., et al. (2018). Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature, 562(7726), 272–276

    Article  CAS  Google Scholar 

  16. Harrison, S. E., et al. (2017). Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science, 356(6334), eaal1810

    Article  Google Scholar 

  17. Rivron, N. C., et al. (2018). Blastocyst-like structures generated solely from stem cells. Nature, 557(7703), 106–111

    Article  CAS  Google Scholar 

  18. Sozen, B., et al. (2018). Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nature Cell Biology, 20(8), 979–989

    Article  CAS  Google Scholar 

  19. Zhang, S., et al. (2019). Implantation initiation of self-assembled embryo-like structures generated using three types of mouse blastocyst-derived stem cells. Nature Communications, 10(1), 496

    Article  Google Scholar 

  20. Vrij, E. J., et al. (2019). Chemically-defined induction of a primitive endoderm and epiblast-like niche supports post-implantation progression from blastoids. bioRxiv 510396

  21. Frias-Aldeguer, J., et al. (2020). Embryonic signals perpetuate polar-like trophoblast stem cells and pattern the blastocyst axis. bioRxiv 510362

  22. Xu, P. F., et al. (2021). Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nature Communications, 12(1), 3277

    Article  CAS  Google Scholar 

  23. Veenvliet, J. V., et al. (2020). Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science, 370(6522), eaba4937

    Article  CAS  Google Scholar 

  24. Rossi, G., et al. (2021). Capturing Cardiogenesis in Gastruloids. Cell Stem Cell, 28(2), 230–240e6

    Article  CAS  Google Scholar 

  25. Bérenger-Currias, N. M. L. P., et al. (2022). A gastruloid model of the interaction between embryonic and extra-embryonic cell types. Journal of Tissue Engineering, 13, 20417314221103042

    Article  Google Scholar 

  26. van den Brink, S. C., et al. (2020). Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature, 582(7812), 405–409

    Article  Google Scholar 

  27. Zhao, C., et al. (2021). Reprogrammed blastoids contain amnion-like cells but not trophectoderm. bioRxiv

  28. Yu, L., et al. (2021). Blastocyst-like structures generated from human pluripotent stem cells. Nature, 591(7851), 620–626

    Article  CAS  Google Scholar 

  29. Yanagida, A., et al. (2021). Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell, 28(6), 1016–1022. e4

    Article  CAS  Google Scholar 

  30. Mukhopadhyay, M. (2021). 3D in vitro models of human blastocysts. Nature Methods, 18(5), 445

    Article  CAS  Google Scholar 

  31. Moris, N., et al. (2021). Biomedical and societal impacts of in vitro embryo models of mammalian development. Stem Cell Reports, 16(5), 1021–1030

    Article  Google Scholar 

  32. Liu, X., et al. (2021). Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature, 591(7851), 627–632

    Article  CAS  Google Scholar 

  33. Martyn, I., et al. (2018). Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature, 558(7708), 132–135

    Article  CAS  Google Scholar 

  34. Simunovic, M., et al. (2019). A 3D model of a human epiblast reveals BMP4-driven symmetry breaking. Nature Cell Biology, 21(7), 900–910

    Article  CAS  Google Scholar 

  35. Warmflash, A., et al. (2014). A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nature Methods, 11(8), 847–854

    Article  CAS  Google Scholar 

  36. Moris, N., et al. (2020). An in vitro model of early anteroposterior organization during human development. Nature, 582(7812), 410–415

    Article  CAS  Google Scholar 

  37. Shao, Y., et al. (2017). Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nature Materials, 16(4), 419–425

    Article  CAS  Google Scholar 

  38. Xue, X., et al. (2018). Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Materials, 17(7), 633–641

    Article  CAS  Google Scholar 

  39. Zheng, Y., et al. (2019). Controlled modelling of human epiblast and amnion development using stem cells. Nature, 573(7774), 421–425

    Article  CAS  Google Scholar 

  40. Budjan, C., et al. (2022). Paraxial mesoderm organoids model development of human somites. Elife, 11, e68925

    Article  CAS  Google Scholar 

  41. Sanaki-Matsumiya, M., et al. (2022). Periodic formation of epithelial somites from human pluripotent stem cells. Nature Communications, 13(1), 2325

    Article  CAS  Google Scholar 

  42. Olmsted, Z. T., & Paluh, J. L. (2021). Co-development of central and peripheral neurons with trunk mesendoderm in human elongating multi-lineage organized gastruloids. Nature Communications, 12(1), 3020

    Article  Google Scholar 

  43. Libby, A. R. G., et al. (2021). Axial elongation of caudalized human organoids mimics aspects of neural tube development. Development, 148(12), dev198275

    Article  CAS  Google Scholar 

  44. Turner, D. A., et al. (2016). Organoids and the genetically encoded self-assembly of embryonic stem cells. Bioessays, 38(2), 181–191

    Article  Google Scholar 

  45. Simunovic, M., & Brivanlou, A. H. (2017). Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development, 144(6), 976–985

    Article  CAS  Google Scholar 

  46. Shahbazi, M. N., & Zernicka-Goetz, M. (2018). Deconstructing and reconstructing the mouse and human early embryo. Nature Cell Biology, 20(8), 878–887

    Article  CAS  Google Scholar 

  47. Taniguchi, K., et al. (2019). Opening the black box: Stem cell-based modeling of human post-implantation development. Journal Of Cell Biology, 218(2), 410–421

    Article  CAS  Google Scholar 

  48. Zylicz, J. J. (2020). Defined Stem Cell Culture Conditions to Model Mouse Blastocyst Development.Curr Protoc Stem Cell Biol52 (1), e105

  49. World Health Organization (2022). Birth defects. https://www.who.int/news-room/fact-sheets/detail/birth-defects, (accessed 24/03/2022)

  50. Wallingford, J. B. (2005). Neural tube closure and neural tube defects: Studies in animal models reveal known knowns and known unknowns. American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 135 C(1), 59–68

    Article  Google Scholar 

  51. Liu, A. (2020). Animal Models of Human Birth Defects (1st ed.). Springer Singapore

  52. Lewis-Israeli, Y. R., et al. (2021). Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nature Communications, 12(1), 5142

    Article  CAS  Google Scholar 

  53. Drakhlis, L., et al. (2021). Human heart-forming organoids recapitulate early heart and foregut development. Nature Biotechnology, 39(6), 737–746

    Article  CAS  Google Scholar 

  54. Hofbauer, P., et al. (2021). Cardioids reveal self-organizing principles of human cardiogenesis. Cell, 184(12), 3299–3317e22

    Article  CAS  Google Scholar 

  55. Shou, Y., et al. (2020). The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol, 8, 579659

    Article  Google Scholar 

  56. Khoury, M. J. (1989). Epidemiology of birth defects. Epidemiologic Reviews, 11, 244–248

    Article  CAS  Google Scholar 

  57. Fahed, A. C., et al. (2013). Genetics of Congenital Heart Disease. Circulation Research, 112(4), 707–720

    Article  CAS  Google Scholar 

  58. Brutsaert, D. L. (2003). Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews, 83(1), 59–115

    Article  CAS  Google Scholar 

  59. Narmoneva, D. A., et al. (2004). Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation, 110(8), 962–968

    Article  Google Scholar 

  60. Kidokoro, H., et al. (2018). The heart tube forms and elongates through dynamic cell rearrangement coordinated with foregut extension. Development, 145(7), dev152488

    Article  Google Scholar 

  61. Varner, V. D., & Taber, L. A. (2012). Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development, 139(9), 1680–1690

    Article  CAS  Google Scholar 

  62. Olmsted, Z. T., & Paluh, J. L. (2022). A Combined Human Gastruloid Model of Cardiogenesis and Neurogenesis. bioRxiv, 2022.02.25.481991

  63. Eckalbar, W. L., et al. (2012). Scoliosis and segmentation defects of the vertebrae. Wiley Interdisciplinary Reviews: Developmental Biology, 1(3), 401–423

    Article  CAS  Google Scholar 

  64. Bejiqi, R., et al. (2015). Klippel - Feil Syndrome Associated with Congential Heart Disease Presentaion of Cases and a Review of the Curent Literature. Open access Macedonian journal of medical sciences, 3(1), 129–134

    Article  Google Scholar 

  65. Simpson, J. M., et al. (1995). Congenital heart disease in spondylothoracic dysostosis: two familial cases. Journal Of Medical Genetics, 32(8), 633–635

    Article  CAS  Google Scholar 

  66. Mortier, G. R., et al. (1996). Multiple vertebral segmentation defects: analysis of 26 new patients and review of the literature. American Journal Of Medical Genetics, 61(4), 310–319

    Article  CAS  Google Scholar 

  67. Turnpenny, P. D., et al. (2007). Abnormal vertebral segmentation and the notch signaling pathway in man. Developmental Dynamics, 236(6), 1456–1474

    Article  CAS  Google Scholar 

  68. Naiche, L. A., et al. (2011). FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proceedings of the National Academy of Sciences 108 (10), 4018–4023

  69. Aulehla, A., et al. (2003). Wnt3a Plays a Major Role in the Segmentation Clock Controlling Somitogenesis. Developmental Cell, 4(3), 395–406

    Article  CAS  Google Scholar 

  70. Maroto, M., et al. (2012).Somitogenesis. Development139 (14),2453–2456

    Article  CAS  Google Scholar 

  71. Blencowe, H., et al. (2018). Estimates of global and regional prevalence of neural tube defects for 2015: a systematic analysis. Annals of the New York Academy of Sciences, 1414(1), 31–46

    Article  Google Scholar 

  72. Ornoy, A., & Arnon, J. (1993). Clinical teratology. Western Journal Of Medicine, 159(3), 382–390

    CAS  Google Scholar 

  73. F.Gilbert, S., & Epel, D. (2009). Ecological Developmental Biology: Integrating Epigenetics, Medicine, And Evolution. 2nd Edition

  74. European Medicines Agency (2020). ICH S5 (R3) guideline on reproductive toxicology: Detection of Toxicity to Reproduction for Human Pharmaceuticals. https://www.ema.europa.eu/en/ich-s5-r3-guideline-reproductive-toxicology-detection-toxicity-reproduction-human-pharmaceuticals, (accessed 24/03/2022)

  75. Vargesson, N. (2015). Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today, 105(2), 140–156

    Article  CAS  Google Scholar 

  76. Mellin, G. W., & Katzenstein, M. (1962). The saga of thalidomide. Neuropathy to embryopathy, with case reports of congenital anomalies. N Engl J Med 267, 1238-44 concl

  77. Stummann, T. C., et al. (2007). Embryotoxicity hazard assessment of methylmercury and chromium using embryonic stem cells.Toxicology242 (1–3), 130 – 43.

  78. Stummann, T. C., et al. (2008). Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells.Toxicology252 (1–3), 118 – 22.

  79. Genschow, E., et al. (2002). The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. European Centre for the Validation of Alternative Methods. Alternatives To Laboratory Animals, 30(2), 151–176

    Article  CAS  Google Scholar 

  80. Luz, A. L., & Tokar, E. J. (2018). Pluripotent Stem Cells in Developmental Toxicity Testing: A Review of Methodological Advances. Toxicological Sciences, 165(1), 31–39

    Article  CAS  Google Scholar 

  81. Kugler, J., et al. (2017). Embryonic stem cells and the next generation of developmental toxicity testing. Expert Opinion On Drug Metabolism & Toxicology, 13(8), 833–841

    Article  CAS  Google Scholar 

  82. Liu, W., et al. (2013). Stem cell models for drug discovery and toxicology studies. Journal Of Biochemical And Molecular Toxicology, 27(1), 17–27

    Article  Google Scholar 

  83. Shinde, V., et al. (2015). Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.J Vis Exp( 100), e52333

  84. Meganathan, K., et al. (2012). Identification of thalidomide-specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells.PLoS One7 (8), e44228

  85. Warkus, E. L. L., & Marikawa, Y. (2018). Fluoxetine Inhibits Canonical Wnt Signaling to Impair Embryoid Body Morphogenesis: Potential Teratogenic Mechanisms of a Commonly Used Antidepressant. Toxicological Sciences, 165(2), 372–388

    Article  CAS  Google Scholar 

  86. Krug, A. K., et al. (2013). Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Archives Of Toxicology, 87(1), 123–143

    Article  CAS  Google Scholar 

  87. Lauschke, K., et al. (2020). A novel human pluripotent stem cell-based assay to predict developmental toxicity. Archives Of Toxicology, 94(11), 3831–3846

    Article  CAS  Google Scholar 

  88. Jaklin, M., et al. (2020). Focus on germ-layer markers: A human stem cell-based model for in vitro teratogenicity testing. Reproductive Toxicology, 98, 286–298

    Article  CAS  Google Scholar 

  89. Lau, C. G., & Marikawa, Y. (2014). Morphology-based mammalian stem cell tests reveal potential developmental toxicity of donepezil. Molecular Reproduction And Development, 81(11), 994–1008

    Article  CAS  Google Scholar 

  90. Marikawa, Y., et al. (2009). Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis, 47(2), 93–106

    Article  CAS  Google Scholar 

  91. Li, A. S., & Marikawa, Y. (2016). Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reproductive Toxicology, 66, 68–83

    Article  CAS  Google Scholar 

  92. Marikawa, Y., et al. (2020). Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reproductive Toxicology, 91, 74–91

    Article  CAS  Google Scholar 

  93. Mantziou, V., et al. (2021). In vitro teratogenicity testing using a 3D, embryo-like gastruloid system. Reproductive Toxicology, 105, 72–90

    Article  CAS  Google Scholar 

  94. Cerrizuela, S., et al. (2020). The role of teratogens in neural crest development. Birth Defects Res, 112(8), 584–632

    Article  CAS  Google Scholar 

  95. Girgin, M. U., et al. (2021). Gastruloids generated without exogenous Wnt activation develop anterior neural tissues. Stem Cell Reports, 16(5), 1143–1155

    Article  CAS  Google Scholar 

  96. Hiramatsu, R., et al. (2013). External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Developmental Cell, 27(2), 131–144

    Article  CAS  Google Scholar 

  97. Cha, J., & Dey, S. K. (2014). Cadence of procreation: orchestrating embryo-uterine interactions. Seminars In Cell & Developmental Biology, 34, 56–64

    Article  Google Scholar 

  98. Wang, H., & Dey, S. K. (2006). Roadmap to embryo implantation: clues from mouse models. Nature Reviews Genetics, 7(3), 185–199

    Article  Google Scholar 

  99. Fouladi-Nashta, A. A., et al. (2005). Characterization of the uterine phenotype during the peri-implantation period for LIF-null, MF1 strain mice. Development Biology, 281(1), 1–21

    Article  CAS  Google Scholar 

  100. Rosario, G. X., et al. (2014). The LIF-mediated molecular signature regulating murine embryo implantation. Biology Of Reproduction, 91(3), 66

    Article  Google Scholar 

  101. Stewart, C. L., et al. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature, 359(6390), 76–79

    Article  CAS  Google Scholar 

  102. Goolam, M., et al. (2020). The transcriptional repressor Blimp1/PRDM1 regulates the maternal decidual response in mice. Nature Communications, 11(1), 2782

    Article  CAS  Google Scholar 

  103. Osafune, K., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315

    Article  CAS  Google Scholar 

  104. Siller, R., et al. (2016). Development of a rapid screen for the endodermal differentiation potential of human pluripotent stem cell lines. Scientific Reports, 6, 37178

    Article  CAS  Google Scholar 

  105. Kim, K., et al. (2011). Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nature Biotechnology, 29(12), 1117–1119

    Article  CAS  Google Scholar 

  106. Quattrocelli, M., et al. (2011). Intrinsic cell memory reinforces myogenic commitment of pericyte-derived iPSCs. The Journal Of Pathology, 223(5), 593–603

    Article  CAS  Google Scholar 

  107. Bar-Nur, O., et al. (2011). Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell, 9(1), 17–23

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the South African National Research Foundation (M.G., Competitive Support for Unrated Researchers, A.A. Postgraduate MSc Scholarship) and the University of Cape Town (M.G., Research Development Grant, S.R., Building Research Active Grant).

Author information

Authors and Affiliations

Authors

Contributions

MG conceived and designed the study. AA and SR performed the literature review and wrote the first draft of the manuscript. All authors contributed to the reading, editing and approval of the final manuscript.

Corresponding author

Correspondence to Mubeen Goolam.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Atoosa Amel and Simoné Rossouw contributed equally to this publication.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amel, A., Rossouw, S. & Goolam, M. Gastruloids: A Novel System for Disease Modelling and Drug Testing. Stem Cell Rev and Rep 19, 104–113 (2023). https://doi.org/10.1007/s12015-022-10462-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10462-5

Keywords

Navigation