Skip to main content

Advertisement

Log in

Muscle Stem Cell Function Is Impaired in β2-Adrenoceptor Knockout Mice

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

A Correction to this article was published on 14 April 2022

This article has been updated

Abstract

Knockout (ko) mice for the β2 adrenoceptor (Adrβ2) have impaired skeletal muscle regeneration, suggesting that this receptor is important for muscle stem cell (satellite cell) function. Here, we investigated the role of Adrβ2 in the function of satellite cells from β2ko mice in the context of muscle regeneration, through in vivo and in vitro experiments. Immunohistochemical analysis showed a significant reduction in the number of self-renewed Pax7+ satellite cells, proliferating Pax7+/MyoD+ myogenic precursor cells, and regenerating eMHC+ myofibers in regenerating muscle of β2ko mice at 30, 3, and 10 days post-injury, respectively. Quiescent satellite cells were isolated by fluorescence-activated cell sorting, and cell cycle entry was assessed by EdU incorporation. The results demonstrated a lower number of proliferating Pax7+/EdU+ satellite cells from β2ko mice. There was an increase in the gene expression of the cell cycle inhibitor Cdkn1a and Notch pathway components and the activation of Notch signaling in proliferating myoblasts from β2ko mice. There was a decrease in the number of myogenin-positive nuclei in myofibers maintained in differentiation media, and a lower fusion index in differentiating myoblasts from β2ko mice. Furthermore, the gene expression of Wnt/β-catenin signaling components, the expression of nuclear β-catenin and the activation of Wnt/β-catenin signaling decreased in differentiating myoblasts from β2ko mice. These results indicate that Adrβ2 plays a crucial role in satellite cell self-renewal, as well as in myoblast proliferation and differentiation by regulating Notch and Wnt/β-catenin signaling, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Change history

References

  1. Mauro, A. (1961). Satellite cell of skeletal muscle fibers. The Journal of Biophysical and Biochemical Cytology, 9, 493–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Feige, P., Brun, C. E., Ritso, M., & Rudnicki, M. A. (2019). Orienting muscle stem cells for regeneration in homeostasis, aging, and disease. Cell Stem Cell, 23, 653–664.

    Article  CAS  Google Scholar 

  3. Bentzinger, C. F., Wang, Y. X., Dumont, N. A., & Rudnicki, M. A. (2013). Cellular dynamics in the muscle satellite cell niche. EMBO Reports, 14, 1062–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dort, J., Fabre, P., Molina, T., & Dumont, N. A. (2019). Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases. Stem Cells International, 2019, 1–20.

    Article  CAS  Google Scholar 

  5. Yin, H., Price, F., & Rudnicki, M. A. (2013). Satellite cells and the muscle stem cell niche. Physiological Reviews, 93, 23–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giordani, L., Parisi, A., & Le Grand, F. (2018). Satellite cell self-renewal. Current Topics in Developmental Biology, 126, 177–203.

    Article  PubMed  Google Scholar 

  7. Rayagiri, S. S., Ranaldi, D., Raven, A., Mohamad Azhar, N. I. F., Lefebvre, O., Zammit, P. S., & Borycki, A.-G. (2018). Basal lamina remodeling at the skeletal muscle stem cell niche mediates stem cell self-renewal. Nature Communications, 9, 1075–1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Floss, T., Arnold, H. H., & Braun, T. (1997). A role for FGF-6 in skeletal muscle regeneration. Genes & Development, 11, 2040–2051.

    Article  CAS  Google Scholar 

  9. Zanou, N., & Gailly, P. (2013). Skeletal muscle hypertrophy and regeneration: Interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cellular and Molecular Life Sciences, 70, 4117–4130.

    Article  CAS  PubMed  Google Scholar 

  10. Baghdadi, M. B., & Tajbakhsh, S. (2018). Regulation and phylogeny of skeletal muscle regeneration. Developmental Biology, 433, 200–209.

    Article  CAS  PubMed  Google Scholar 

  11. Cheung, T. H., & Rando, T. A. (2013). Molecular regulation of stem cell quiescence. Nature Reviews Molecular Cell Biology, 14, 329–340.

    Article  CAS  PubMed  Google Scholar 

  12. Bjornson, C. R. R., Cheung, T. H., Liu, L., Tripathi, P. V., Steeper, K. M., & Rando, T. A. (2012). Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells, 30, 232–242.

    Article  CAS  PubMed  Google Scholar 

  13. Tsivitse, S. (2010). Notch and Wnt signaling, physiological stimuli and postnatal Myogenesis. International Journal of Biological Sciences, 6, 268–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva, M. T., Wensing, L. A., Brum, P. C., Camara, N. O., & Miyabara, E. H. (2014). Impaired structural and functional regeneration of skeletal muscles from beta2-adrenoceptor knockout mice. Acta Physiologica (Oxford, England), 211, 617–633.

    Article  CAS  PubMed Central  Google Scholar 

  15. Silva, M. T., Nascimento, T. L., Pereira, M. G., Siqueira, A. S., Brum, P. C., Jaeger, R. G., & Miyabara, E. H. (2016). beta2-adrenoceptor is involved in connective tissue remodeling in regenerating muscles by decreasing the activity of MMP-9. Cell and Tissue Research, 365, 173–186.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, Y. S., & Sainz, R. D. (1992). β-Adrenergic agonists and hypertrophy of skeletal muscles. Life Sciences, 50, 397–407.

    Article  CAS  PubMed  Google Scholar 

  17. Lynch, G. S., & Ryall, J. G. (2008). Role of β-adrenoceptor signaling in skeletal muscle: Implications for muscle wasting and disease. Physiological Reviews, 88, 729–767.

    Article  CAS  PubMed  Google Scholar 

  18. Koopman, R., Gehrig, S. M., Léger, B., Trieu, J., Walrand, S., Murphy, K. T., & Lynch, G. S. (2010). Cellular mechanisms underlying temporal changes in skeletal muscle protein synthesis and breakdown during chronic β-adrenoceptor stimulation in mice. Journal of Physiology, 588, 4811–4823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joassard, O. R., Amirouche, A., Gallot, Y. S., Desgeorges, M. M., Castells, J., Durieux, A. C., Berthon, P., & Freyssenet, D. G. (2013). Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in response to formoterol administration in rat skeletal muscle. International Journal of Biochemistry and Cell Biology, 45, 2444–2455.

    Article  CAS  PubMed  Google Scholar 

  20. Gonçalves, D. A., Silveira, W. A., Manfredi, L. H., Graça, F. A., Armani, A., Bertaggia, E., O’Neill, B. T., Lautherbach, N., Machado, J., Nogara, L., Pereira, M. G., Arcidiacono, D., Realdon, S., Kahn, C. R., Sandri, M., Kettelhut, I. C., & Navegantes, L. C. C. (2019). Insulin/IGF1 signalling mediates the effects of β 2 -adrenergic agonist on muscle proteostasis and growth. Journal of Cachexia, Sarcopenia and Muscle, 10, 455–475.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hagg, A., Colgan, T. D., Thomson, R. E., Qian, H., Lynch, G. S., & Gregorevic, P. (2016). Using AAV vectors expressing the β2-adrenoceptor or associated Gα proteins to modulate skeletal muscle mass and muscle fibre size. Scientific Reports, 6, 23042–23042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chia, L. Y., Evans, B. A., Mukaida, S., Bengtsson, T., Hutchinson, D. S., & Sato, M. (2019). Adrenoceptor regulation of the mechanistic target of rapamycin in muscle and adipose tissue. British Journal of Pharmacology, 176, 2433–2448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Conte, T. C., Silva, L. H., Silva, M. T., Hirabara, S. M., Oliveira, A. C., Curi, R., Moriscot, A. S., Aoki, M. S., & Miyabara, E. H. (2012). The beta2-adrenoceptor agonist formoterol improves structural and functional regenerative capacity of skeletal muscles from aged rat at the early stages of postinjury. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 67, 443–455.

    Article  PubMed  CAS  Google Scholar 

  24. Roberts, P., & Mcgeachie, J. K. (1992). The effects of clenbuterol on satellite cell activation and the regeneration of skeletal muscle: An autoradiographic and morphometric study of whole muscle transplants in mice. Journal of Anatomy, 180, 57–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ryall, J. G., Schertzer, J. D., Alabakis, T. M., Gehrig, S. M., Plant, D. R., & Lynch, G. S. (2008). Intramuscular beta2-agonist administration enhances early regeneration and functional repair in rat skeletal muscle after myotoxic injury. Journal of Applied Physiology, 105, 165–172.

  26. Chen, S.-J., Yue, J., Zhang, J.-X., Jiang, M., Hu, T.-Q., Leng, W.-D., Xiang, L., Li, X.-Y., Zhang, L., Zheng, F., Yuan, Y., Guo, L.-Y., Pan, Y.-M., Yan, Y.-W., Wang, J.-N., Chen, S.-Y., & Tang, J.-M. (2019). Continuous exposure of isoprenaline inhibits myoblast differentiation and fusion through PKA/ERK1/2-FOXO1 signaling pathway. Stem Cell Research & Therapy, 10, 70–70.

    Article  CAS  Google Scholar 

  27. Chruscinski, A. J., Rohrer, D. K., Schauble, E., Desai, K. H., Bernstein, D., & Kobilka, B. K. (1999). Targeted disruption of the β2 adrenergic receptor gene. Journal of Biological Chemistry, 274, 16694–16700.

    Article  CAS  PubMed  Google Scholar 

  28. Gopinath, S. D., Webb, A. E., Brunet, A., & Rando, T. A. (2014). FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Reports, 2, 414–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheung, T. H., Quach, N. L., Charville, G. W., Liu, L., Park, L., Edalati, A., Yoo, B., Hoang, P., & Rando, T. A. (2012). Maintenance of muscle stem-cell quiescence by microRNA-489. Nature, 482, 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zammit, P. S., Partridge, T. A., & Yablonka-Reuveni, Z. (2006). The skeletal muscle satellite cell: The stem cell that came in from the cold. The Journal of Histochemistry and Cytochemistry, 54, 1177–1191.

    Article  CAS  PubMed  Google Scholar 

  31. Quach, N. L., & Rando, T. A. (2006). Focal adhesion kinase is essential for costamerogenesis in cultured skeletal muscle cells. Developmental Biology, 293, 38–52.

    Article  CAS  PubMed  Google Scholar 

  32. Wen, Y., Bi, P., Liu, W., Asakura, A., Keller, C., & Kuang, S. (2012). Constitutive notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Molecular and Cellular Biology, 32, 2300–2311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fuziwara, C. S., & Kimura, E. T. (2014). High iodine blocks a notch/miR-19 loop activated by the BRAF(V600E) oncoprotein and restores the response to TGFbeta in thyroid follicular cells. Thyroid, 24, 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ridgeway, A. G., Petropoulos, H., Wilton, S., & Skerjanc, I. S. (2000). Wnt signaling regulates the function of MyoD and Myogenin. Journal of Biological Chemistry, 275, 32398–32405.

    Article  CAS  PubMed  Google Scholar 

  35. Rudolf, A., Schirwis, E., Giordani, L., Parisi, A., Lepper, C., Taketo, M. M., & Le Grand, F. (2016). β-Catenin activation in muscle progenitor cells regulates tissue repair. Cell Reports, 15, 1277–1290.

    Article  CAS  PubMed  Google Scholar 

  36. Veeman, M. T., Slusarski, D. C., Kaykas, A., Louie, S. H., & Moon, R. T. (2003). Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Current Biology, 13, 680–685.

    Article  CAS  PubMed  Google Scholar 

  37. Kanzleiter, T., Wilks, D., Preston, E., Ye, J., Frangioudakis, G., & Cooney, G. J. (2009). Regulation of the nuclear hormone receptor nur77 in muscle: Influence of exercise-activated pathways in vitro and obesity in vivo. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1792, 777–782.

    Article  CAS  Google Scholar 

  38. Maruoka, H., Yamazoe, R., Takahashi, R., Yatsuo, K., Ido, D., Fuchigami, Y., Hoshikawa, F., & Shimoke, K. (2020). Molecular mechanism of nur77 gene expression and downstream target genes in the early stage of forskolin-induced differentiation in PC12 cells. Scientific Reports, 10, 33–35.

    Article  CAS  Google Scholar 

  39. Hawke, T. J., Meeson, A. P., Jiang, N., Graham, S., Hutcheson, K., Dimaio, J. M., & Garry, D. J. (2003). p21 is essential for normal myogenic progenitor cell function in regenerating skeletal muscle. American Journal of Physiology-Cell Physiology, 285, C1019–C1027.

    Article  CAS  PubMed  Google Scholar 

  40. Yosef, R., Pilpel, N., Papismadov, N., Gal, H., Ovadya, Y., Vadai, E., Miller, S., Porat, Z., Ben-Dor, S., & Krizhanovsky, V. (2017). p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. The EMBO Journal, 36, 2280–2295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beitzel, F., Sillence, M. N., & Lynch, G. S. (2007). β-Adrenoceptor signaling in regenerating skeletal muscle after β-agonist administration. American Journal of Physiology. Endocrinology and Metabolism, 293, E932–E940.

    Article  CAS  PubMed  Google Scholar 

  42. Mourikis, P., Sambasivan, R., Castel, D., Rocheteau, P., Bizzarro, V., Tajbakhsh, S., & Philippos, M. (2012). A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells, 30, 243–252.

    Article  CAS  PubMed  Google Scholar 

  43. Luo, D., Renault, V. M., & Rando, T. A. (2005). The regulation of notch signaling in muscle stem cell activation and postnatal myogenesis. Seminars in Cell & Developmental Biology, 16, 612–622.

    Article  CAS  Google Scholar 

  44. Alonso-Martin, S., Auradé, F., Mademtzoglou, D., Rochat, A., Zammit, P. S., & Relaix, F. (2018). SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. eLife, 7, 1–29.

    Article  Google Scholar 

  45. Delday, M. I., & Maltin, C. A. (1997). Clenbuterol increases the expression of myogenin but not myoD in immobilized rat muscles. The American Journal of Physiology, 272, E941–E944.

    CAS  PubMed  Google Scholar 

  46. Chen, H., Liu, D., Yang, Z., Sun, L., Deng, Q., Yang, S., Qian, L., Guo, L., Yu, M., Hu, M., Shi, M., & Guo, N. (2014). Adrenergic signaling promotes angiogenesis through endothelial cell-tumor cell crosstalk. Endocrine-Related Cancer, 21, 783–795.

    Article  CAS  PubMed  Google Scholar 

  47. Conboy, I. M., & Rando, T. A. (2002). The regulation of notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Developmental Cell, 3, 397–409.

    Article  CAS  PubMed  Google Scholar 

  48. Fukada, S. I., Yamaguchi, M., Kokubo, H., Ogawa, R., Uezumi, A., Yoneda, T., Matev, M. M., Motohashi, N., Ito, T., Zolkiewska, A., Johnson, R. L., Saga, Y., Miyagoe-Suzuki, Y., Tsujikawa, K., Takeda, S. I., & Yamamoto, H. (2011). Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development, 138, 4609–4619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Spencer, S. L., Cappell, S. D., Tsai, F.-C., Overton, K. W., Wang, C. L., & Meyer, T. (2013). The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell, 155, 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yao, X., Yu, T., Zhao, C., Li, Y., Peng, Y., Xi, F., & Yang, G. (2017). Evodiamine promotes differentiation and inhibits proliferation of C2C12 muscle cells. International Journal of Molecular Medicine, 41, 1627–1634.

    PubMed  Google Scholar 

  51. Biferi, M. G., Nicoletti, C., Falcone, G., Puggioni, E. M. R., Passaro, N., Mazzola, A., Pajalunga, D., Zaccagnini, G., Rizzuto, E., Auricchio, A., Zentilin, L., De Luca, G., Giacca, M., Martelli, F., Musio, A., Musarò, A., & Crescenzi, M. (2015). Proliferation of multiple cell types in the skeletal muscle tissue elicited by acute p21 suppression. Molecular Therapy, 23, 885–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chinzei, N., Hayashi, S., Ueha, T., Fujishiro, T., Kanzaki, N., Hashimoto, S., Sakata, S., Kihara, S., Haneda, M., Sakai, Y., Kuroda, R., & Kurosaka, M. (2015). P21 deficiency delays regeneration of skeletal muscular tissue. PLoS One, 10, e0125765–e0125765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Brack, A. S., Conboy, I. M., Conboy, M. J., Shen, J., & Rando, T. A. (2008). A temporal switch from notch to Wnt signaling in muscle stem cells is necessary for Normal adult Myogenesis. Cell Stem Cell, 2, 50–59.

    Article  CAS  PubMed  Google Scholar 

  54. Chen, A. E., Ginty, D. D., & Fan, C. M. (2005). Protein kinase a signalling via CREB controls myogenesis induced by Wnt proteins. Nature, 433, 317–322.

    Article  CAS  PubMed  Google Scholar 

  55. Stewart, R., Flechner, L., Montminy, M., & Berdeaux, R. (2011). CREB is activated by muscle injury and promotes muscle regeneration. PLoS One, 6, e24714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li, L., & Fan, C. M. (2017). A CREB-MPP7-AMOT regulatory Axis controls muscle stem cell expansion and self-renewal competence. Cell Reports, 21, 1253–1266.

    Article  CAS  PubMed  Google Scholar 

  57. Cornelison, D. D. W., Filla, M. S., Stanley, H. M., Rapraeger, A. C., Olwin, B. B. (2001). Syndecan-3 and Syndecan-4 Specifically Mark Skeletal Muscle Satellite Cells and Are Implicated in Satellite Cell Maintenance and Muscle Regeneration. Developmental Biology 239, 79–94

  58. Cornelison, D. D. W.,  Wilcox-Adelman, S. A., Goetinck, P. F., Rauvala, H.,  Rapraeger, A. C., Olwin, B. B. (2004). Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev, 18(18): 2231–2236.

Download references

Acknowledgments

The authors are grateful to Chao Yun Irene Yan for providing cryosections of cephalic regions from HH19/20 chick embryos, Luiz C. Navegantes for stimulating discussions, and Anselmo S. Moriscot for allowing the use of the cryostat from his laboratory. This study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Nos. 14/23391-8 and 18/24946-4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Fellowship/Grant No. 312142/2018-8). Tatiana E. Koike received a Ph.D. fellowship from FAPESP (Grant No. 17/09069-4).

Funding

This study was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant Nos. 14/23391–8 and 18/24946–4) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Fellowship/Grant No. 312142/2018–8). Tatiana E. Koike received a Ph.D. fellowship from FAPESP (Grant No. 17/09069–4).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Tatiana E. Koike, Elen H. Miyabara. Experimental performance and/or data analysis: Tatiana E. Koike, Cesar S. Fuziwara, Patricia C. Brum, Edna T. Kimura, Thomas. A. Rando, Elen H. Miyabara. Funding acquisition: Thomas. A. Rando, Elen H. Miyabara. Project administration: Tatiana E. Koike, Elen H. Miyabara. Supervision: Elen H. Miyabara. Manuscript preparation: Tatiana E. Koike, Elen H. Miyabara. Manuscript review: Tatiana E. Koike, Cesar S. Fuziwara, Patricia C. Brum, Edna T. Kimura, Thomas. A. Rando, Elen H. Miyabara.

Corresponding author

Correspondence to Elen H. Miyabara.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All animal experiments were approved by the Animal Research Ethics Committee of the Institute of Biomedical Sciences of the University of São Paulo under Protocol No. 106/2017.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 5 was updated only in HTML, but not in the PDF version. In addition, the Supplementary Information for Tables S1 and S2 (or ESM 3) has to be replaced and updated.

Supplementary Information

ESM 1

(PNG 595 kb)

12015_2022_10334_MOESM1_ESM.tif

Fluorescence-activated cell sorting gating strategy of myogenic progenitors. Gates were defined based on unstained or single-stained samples. Cells were gated on side scatter (SSC) and forward scatter (FSC), and dead cells were excluded by DAPI dilactate staining. Representative FACS of CD45– CD31– Sca1– VCAM1+ cells. (TIF 9746 kb)

ESM 2

(PNG 632 kb)

A

Adrβ2 expression in FACS-purified activated satellite cells isolated from wild-type (WT) mice at 3 dpi and cultured for 24 h in wash medium. Blue: DAPI; White: Synd-4; Green: MyoD; Red: Adrβ2. Adrβ2 expression in early differentiating myoblasts (FACS-purified quiescent satellite cells cultured in wash medium for 24 h and in differentiation medium for 24 h) from WT mice. Blue: DAPI; White: Synd-4; Red: myogenin (MyoG); Green: Adrβ2. Bar: 50 μm. B Cryosections obtained from the cephalic regions from HH19/20 chick embryos and incubated with antibodies against MyoD and MyoG and Adrβ2 and DAPI are negative controls of these antibodies. Syndecan-4 is a marker of quiescent and activated satellite cells. Once activated, satellite cells maintain the expression of syndecan-4 for at least 96 h (Cornelison et al. 57). Therefore, satellite cells were stained with the antibody against syndecan-4 (Cornelison et al. 58). Myogenic stages—activation/proliferation or early differentiation— were identified using MyoD or MyoG, respectively. C Cross-sections of uninjured TA muscles from WT and β2ko mice stained with Pax7 (red), laminin (white), and DAPI (blue). Arrows indicate Pax7+ satellite cells. Bar: 20 μm. D Number of Pax7+ satellite cells per mm2 of uninjured TA muscles from WT and β2ko mice (four fields per animal were analyzed). Mean ± SEM of three different biological replicates per group. *p ≤ 0.05 vs. WT. E mRNA levels of Nur-77 in proliferating myoblasts (cultured in growth medium for 24 h) from WT and β2ko mice. Mean ± SEM of four biological replicates per group. *p ≤ 0.05 vs. WT. (TIF 9686 kb)

ESM 3

(DOC 90.0 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, T.E., Fuziwara, C.S., Brum, P.C. et al. Muscle Stem Cell Function Is Impaired in β2-Adrenoceptor Knockout Mice. Stem Cell Rev and Rep 18, 2431–2443 (2022). https://doi.org/10.1007/s12015-022-10334-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-022-10334-y

Keywords

Navigation