Skip to main content

Advertisement

Log in

Integrins in the Regulation of Mesenchymal Stem Cell Differentiation by Mechanical Signals

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) can sense and convert mechanical stimuli signals into a chemical response. Integrins are involved in the mechanotransduction from inside to outside and from outside to inside, and ultimately affect the fate of MSCs responding to different mechanical signals. Different integrins participate in different signaling pathways to regulate MSCs multi-differentiation. In this review, we summarize the latest advances in the effects of mechanical signals on the differentiation of MSCs, the importance of integrins in mechanotransduction, the relationship between integrin heterodimers and different mechanical signals, and the interaction among mechanical signals. We put forward our views on the prospect and challenges of developing mechanical biology in tissue engineering and regenerative medicine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the cur- rent study are available from the corresponding author on reasonable request.

References

  1. Horwitz, E. M., et al. (2005). Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 393–395.

    Article  CAS  PubMed  Google Scholar 

  2. Guilak, F., & Mow, V. C. (2000). The mechanical environment of the chondrocyte: A biphasic finite element model of cell-matrix interactions in articular cartilage. Journal of Biomechanics, 33(12), 1663–1673.

    Article  CAS  PubMed  Google Scholar 

  3. Fletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature, 463(7280), 485–492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jang, I. and K.A. Beningo, Integrins, CAFs and Mechanical Forces in the Progression of Cancer. Cancers (Basel), 2019. 11(5).

  5. Gonzalez-Cruz, R. D., Fonseca, V. C., & Darling, E. M. (2012). Cellular mechanical properties reflect the differentiation potential of adipose-derived mesenchymal stem cells. Proc Natl Acad Sci U S A, 109(24), E1523–E1529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shattil, S. J., Kim, C., & Ginsberg, M. H. (2010). The final steps of integrin activation: The end game. Nature Reviews Molecular Cell Biology, 11(4), 288–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ginsberg, M. H. (2014). Integrin activation. BMB Reports, 47(12), 655–659.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Li, J., & Springer, T. A. (2017). Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci U S A, 114(18), 4685–4690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell, I.D. and M.J. Humphries, Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol, 2011. 3(3).

  10. Xie, C., et al. (2010). Structure of an integrin with an alphaI domain, complement receptor type 4. EMBO Journal, 29(3), 666–679.

    Article  CAS  Google Scholar 

  11. Shoemaker, B. A., Portman, J. J., & Wolynes, P. G. (2000). Speeding molecular recognition by using the folding funnel: The fly-casting mechanism. Proceedings of the National Academy of Sciences of the United States of America, 97(16), 8868–8873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horton, E. R., et al. (2016). The integrin adhesome network at a glance. Journal of Cell Science, 129(22), 4159–4163.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Klapholz, B., & Brown, N. H. (2017). Talin - the master of integrin adhesions. Journal of Cell Science, 130(15), 2435–2446.

    CAS  PubMed  Google Scholar 

  14. Sun, Z., Costell, M., & Fassler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nature Cell Biology, 21(1), 25–31.

    Article  CAS  PubMed  Google Scholar 

  15. Martino, M. M., et al. (2009). Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials, 30(6), 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  16. Cooper, J., & Giancotti, F. G. (2019). Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell, 35(3), 347–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becchetti, A., Petroni, G., & Arcangeli, A. (2019). Ion Channel Conformations Regulate Integrin-Dependent Signaling. Trends in Cell Biology, 29(4), 298–307.

    Article  CAS  PubMed  Google Scholar 

  18. Pillozzi, S. and A. Becchetti, Ion channels in hematopoietic and mesenchymal stem cells. Stem Cells Int, 2012. 2012: p. 217910.

  19. Xiao, E., et al. (2015). Brief reports: TRPM7 Senses mechanical stimulation inducing osteogenesis in human bone marrow mesenchymal stem cells. Stem Cells, 33(2), 615–621.

    Article  PubMed  Google Scholar 

  20. Arcangeli, A., & Becchetti, A. (2006). Complex functional interaction between integrin receptors and ion channels. Trends in Cell Biology, 16(12), 631–639.

    Article  CAS  PubMed  Google Scholar 

  21. Lawson, C.D. and K. Burridge, The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases, 2014. 5: p. e27958.

  22. Ron, A., et al. (2017). Cell shape information is transduced through tension-independent mechanisms. Nature Communications, 8(1), 2145.

    Article  PubMed  PubMed Central  Google Scholar 

  23. McIlhenny, S. E., et al. (2010). Linear shear conditioning improves vascular graft retention of adipose-derived stem cells by upregulation of the alpha5beta1 integrin. Tissue Engineering Part A, 16(1), 245–255.

    Article  CAS  PubMed  Google Scholar 

  24. Bächle, M., & Kohal, R. J. (2004). A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clinical Oral Implants Research, 15(6), 683–692.

    Article  PubMed  Google Scholar 

  25. Reilly, G. C., & Engler, A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. Journal of Biomechanics, 43(1), 55–62.

    Article  PubMed  Google Scholar 

  26. Dejaeger, M., et al. (2017). Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and Wnt signaling in osteoprogenitors. Journal of Bone and Mineral Research, 32(10), 2087–2102.

    Article  CAS  PubMed  Google Scholar 

  27. Park, H., et al. (2019). Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nature Communications, 10(1), 5243.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sorcini, D., et al. (2017). Wnt/beta-catenin signaling induces integrin alpha4beta1 in T cells and promotes a progressive neuroinflammatory disease in mice. The Journal of Immunology, 199(9), 3031–3041.

    Article  CAS  PubMed  Google Scholar 

  29. Fouchard, J., et al. (2014). Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal adhesions. Proc Natl Acad Sci U S A, 111(36), 13075–13080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, N., et al. (2001). Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences, 98(14), 7765–7770.

    Article  CAS  Google Scholar 

  31. Lavenus, S., et al. (2010). Cell interaction with nanopatterned surface of implants. Nanomedicine (London, England), 5(6), 937–947.

    Article  CAS  Google Scholar 

  32. Lee, J., et al. (2015). Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials, 69, 174–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kilian, K. A., et al. (2010). Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci U S A, 107(11), 4872–4877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mathieu, P. S., & Loboa, E. G. (2012). Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathways. Tissue Engineering. Part B, Reviews, 18(6), 436–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yim, E. K., Pang, S. W., & Leong, K. W. (2007). Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Experimental Cell Research, 313(9), 1820–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin, C. H., et al. (2018). Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 12(10), 2099–2111.

    CAS  PubMed  Google Scholar 

  37. Guilak, F., et al. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen, A.T., S.R. Sathe, and E.K. Yim, From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J Phys Condens Matter, 2016. 28(18): p. 183001.

  39. Parandakh, A., et al. (2019). Substrate topography interacts with substrate stiffness and culture time to regulate mechanical properties and smooth muscle differentiation of mesenchymal stem cells. Colloids and Surfaces. B, Biointerfaces, 173, 194–201.

    Article  CAS  PubMed  Google Scholar 

  40. Hou, Y., et al., Surface roughness gradients reveal topography-specific mechanosensitive responses in human mesenchymal stem cells. Small (Weinheim an der Bergstrasse, Germany), 2020. 16(10): p. e1905422.

  41. Nakamoto, T., et al. (2014). Influence of micropattern width on differentiation of human mesenchymal stem cells to vascular smooth muscle cells. Colloids and Surfaces. B, Biointerfaces, 122, 316–323.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, W., et al. (2020). Effect of micropore/microsphere topography and a silicon-incorporating modified titanium plate surface on the adhesion and osteogenic differentiation of BMSCs. Artif Cells Nanomed Biotechnol, 48(1), 230–241.

    Article  CAS  PubMed  Google Scholar 

  43. Wang, M., et al., Microarray analysis reveals that lncRNA PWRN1–209 promotes human bone marrow mesenchymal stem cell osteogenic differentiation on microtopography titanium surface in vitro. J Biomed Mater Res B Appl Biomater, 2020.

  44. Ruminski, S., et al. (2019). Osteogenic differentiation of human adipose-derived stem cells in 3D conditions - comparison of spheroids and polystyrene scaffolds. European Cells & Materials, 37, 382–401.

    Article  CAS  Google Scholar 

  45. Zhou, W., et al. (2019). Effect of titanium implants with coatings of different pore sizes on adhesion and osteogenic differentiation of BMSCs. Artif Cells Nanomed Biotechnol, 47(1), 290–299.

    Article  CAS  PubMed  Google Scholar 

  46. Docheva, D., et al. (2007). Human mesenchymal stem cells in contact with their environment: Surface characteristics and the integrin system. Journal of Cellular and Molecular Medicine, 11(1), 21–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lopes, H. B., et al. (2019). Participation of integrin beta3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research. Part A, 107(6), 1303–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopes, H. B., et al. (2019). Titanium with nanotopography induces osteoblast differentiation through regulation of integrin αV. Journal of Cellular Biochemistry, 120(10), 16723–16732.

    Article  CAS  PubMed  Google Scholar 

  49. Olivares-Navarrete, R., et al. (2008). Integrin alpha2beta1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A, 105(41), 15767–15772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, W., et al. (2012). The role of the Wnt/β-catenin pathway in the effect of implant topography on MG63 differentiation. Biomaterials, 33(32), 7993–8002.

    Article  CAS  PubMed  Google Scholar 

  51. Vining, K. H., & Mooney, D. J. (2017). Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 18(12), 728–742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sun, M., et al. (2018). Effects of matrix stiffness on the morphology, adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells. International Journal of Medical Sciences, 15(3), 257–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerardo, H., et al. (2019). Soft culture substrates favor stem-like cellular phenotype and facilitate reprogramming of human mesenchymal stem/stromal cells (hMSCs) through mechanotransduction. Science and Reports, 9(1), 9086.

    Article  Google Scholar 

  54. Wu, L., et al., Thermoresponsive Stiffness Softening of Hierarchically Porous Nanohybrid Membranes Promotes Niches for Mesenchymal Stem Cell Differentiation. Adv Healthc Mater, 2019. 8(10): p. e1801556.

  55. Olivares-Navarrete, R., et al., Substrate stiffness controls osteoblastic and chondrocytic differentiation of mesenchymal stem cells without exogenous stimuli. PLoS One, 2017. 12(1): p. e0170312.

  56. Gungordu, H. I., et al. (2019). Effect of mechanical loading and substrate elasticity on the osteogenic and adipogenic differentiation of mesenchymal stem cells. Journal of Tissue Engineering and Regenerative Medicine, 13(12), 2279–2290.

    Article  CAS  PubMed  Google Scholar 

  57. Wei, D., et al. (2020). Mechanics-controlled dynamic cell niches guided osteogenic differentiation of stem cells via preserved cellular mechanical memory. ACS Applied Materials & Interfaces, 12(1), 260–274.

    Article  CAS  Google Scholar 

  58. Zhan, X. (2020). Effect of matrix stiffness and adhesion ligand density on chondrogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research. Part A, 108(3), 675–683.

    Article  CAS  PubMed  Google Scholar 

  59. Ledo, A. M., et al. (2020). Extracellular matrix mechanics regulate transfection and SOX9-directed differentiation of mesenchymal stem cells. Acta biomaterialia, 110, 153–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sun, M., et al. (2018). Extracellular matrix stiffness controls osteogenic differentiation of mesenchymal stem cells mediated by integrin α5. Stem cell research & therapy, 9(1), 52.

    Article  Google Scholar 

  61. Sun, Y., et al. (2020). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. Aging, 13(2), 2231–2250.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Park, J. S., et al. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 32(16), 3921–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews Molecular Cell Biology, 20(8), 457–473.

    Article  CAS  PubMed  Google Scholar 

  64. Wan, W., et al. (2019). Synergistic effect of matrix stiffness and inflammatory factors on osteogenic differentiation of MSC. Biophysical Journal, 117(1), 129–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang, P., Mao, Z., & Gao, C. (2015). Combinational effect of matrix elasticity and alendronate density on differentiation of rat mesenchymal stem cells. Acta Biomaterialia, 19, 76–84.

    Article  CAS  PubMed  Google Scholar 

  66. Hou, Y., et al. (2020). Surface roughness and substrate stiffness synergize to drive cellular mechanoresponse. Nano letters, 20(1), 748–757.

    Article  CAS  PubMed  Google Scholar 

  67. Ventre, M., et al. (2019). Aligned fibrous decellularized cell derived matrices for mesenchymal stem cell amplification. Journal of Biomedical Materials Research. Part A, 107(11), 2536–2546.

    Article  CAS  PubMed  Google Scholar 

  68. Pattappa, G., et al. (2019). Cells under pressure - the relationship between hydrostatic pressure and mesenchymal stem cell chondrogenesis. European Cells & Materials, 37, 360–381.

    Article  CAS  Google Scholar 

  69. Argentati, C., et al., Insight into Mechanobiology: How Stem Cells Feel Mechanical Forces and Orchestrate Biological Functions. Int J Mol Sci, 2019. 20(21).

  70. Liu, C., Kaneko, S., & Soma, K. (2008). Expression of integrinalpha5beta1, focal adhesion kinase and integrin-linked kinase in rat condylar cartilage during mandibular lateral displacement. Archives of Oral Biology, 53(8), 701–708.

    Article  CAS  PubMed  Google Scholar 

  71. Steward, A. J., et al. (2012). Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure. Acta Biomaterialia, 8(6), 2153–2159.

    Article  CAS  PubMed  Google Scholar 

  72. Tang, X., et al. (2017). Influence of hydrodynamic pressure on the proliferation and osteogenic differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Journal of Biomedical Materials Research. Part A, 105(12), 3445–3455.

    Article  CAS  PubMed  Google Scholar 

  73. Angele, P., et al. (2003). Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research, 21(3), 451–457.

    Article  CAS  PubMed  Google Scholar 

  74. Stavenschi, E., et al. (2018). Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: A systematic study. Stem Cell Research & Therapy, 9(1), 276.

    Article  CAS  Google Scholar 

  75. Huang, C., & Ogawa, R. (2012). Effect of hydrostatic pressure on bone regeneration using human mesenchymal stem cells. Tissue Engineering Part A, 18(19–20), 2106–2113.

    Article  CAS  PubMed  Google Scholar 

  76. Stavenschi, E., & Hoey, D. A. (2019). Pressure-induced mesenchymal stem cell osteogenesis is dependent on intermediate filament remodeling. Faseb Journal, 33(3), 4178–4187.

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, B., et al. (2019). The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Science and Reports, 9(1), 12642.

    Article  Google Scholar 

  78. Baker, B. M., et al. (2011). Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage. Tissue Engineering Part A, 17(9–10), 1445–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rui, Y. F., et al. (2011). Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells. Journal of Orthopaedic Research, 29(3), 390–396.

    Article  CAS  PubMed  Google Scholar 

  80. McMahon, L. A., Campbell, V. A., & Prendergast, P. J. (2008). Involvement of stretch-activated ion channels in strain-regulated glycosaminoglycan synthesis in mesenchymal stem cell-seeded 3D scaffolds. Journal of Biomechanics, 41(9), 2055–2059.

    Article  PubMed  Google Scholar 

  81. Zeng, Q., et al. (2015). Integrin-β1, not integrin-β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain. Biological Research, 48(1), 25.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Grier, W. G., Moy, A. S., & Harley, B. A. (2017). Cyclic tensile strain enhances human mesenchymal stem cell Smad 2/3 activation and tenogenic differentiation in anisotropic collagen-glycosaminoglycan scaffolds. European Cells & Materials, 33, 227–239.

    Article  CAS  Google Scholar 

  83. Su, X., et al. (2020). Effects of dynamic radial tensile stress on fibrocartilage differentiation of bone marrow mesenchymal stem cells. Biomedical Engineering Online, 19(1), 8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen, J. and X. Wu, Cyclic tensile strain promotes chondrogenesis of bone marrow-derived mesenchymal stem cells by increasing miR-365 expression. Life Sci, 2019. 232: p. 116625.

  85. Yu, H., et al. (2019). Expression of HIF-1 alpha in cycling stretch-induced osteogenic differentiation of bone mesenchymal stem cells. Molecular Medicine Reports, 20(5), 4489–4498.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Xie, Y., et al., Proper mechanical stimulation improve the chondrogenic differentiation of mesenchymal stem cells: Improve the viscoelasticity and chondrogenic phenotype. Biomed Pharmacother, 2019. 115: p. 108935.

  87. Ouyang, X., Y. Xie, and G. Wang, Mechanical stimulation promotes the proliferation and the cartilage phenotype of mesenchymal stem cells and chondrocytes co-cultured in vitro. Biomed Pharmacother, 2019. 117: p. 109146.

  88. Paddillaya, N., et al. (2019). Biophysics of cell-substrate interactions under shear. Front Cell Dev Biol, 7, 251.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Han, P., et al. (2019). Five piconewtons: the difference between osteogenic and adipogenic fate choice in human mesenchymal stem cells. ACS Nano, 13(10), 11129–11143.

    Article  CAS  PubMed  Google Scholar 

  90. Xanthis, I., et al., β1 integrin is a sensor of blood flow direction. J Cell Sci, 2019. 132(11).

  91. Arnsdorf, E. J., et al. (2009). Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. Journal of Cell Science, 122(Pt 4), 546–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu, X., Zhang, X., & Lee, I. (2010). A quantitative study on morphological responses of osteoblastic cells to fluid shear stress. Acta Biochimica et Biophysica Sinica (Shanghai), 42(3), 195–201.

    Article  CAS  Google Scholar 

  93. Sonam, S., et al. (2016). Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Science and Reports, 6, 20415.

    Article  CAS  Google Scholar 

  94. Kupcsik, L., et al. (2010). Improving chondrogenesis: Potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Engineering Part A, 16(6), 1845–1855.

    Article  CAS  PubMed  Google Scholar 

  95. Zhang, C., et al. (2018). Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. The FASEB Journal, 32(8), 4444–4458.

    Article  CAS  PubMed  Google Scholar 

  96. Huang, C. Y., et al. (2004). Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells, 22(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  97. Haugh, M. G., et al. (2011). Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression. Tissue Engineering Part A, 17(23–24), 3085–3093.

    Article  CAS  PubMed  Google Scholar 

  98. Ge, Y., et al., Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel. Frontiers in bioengineering and biotechnology, 2021. 9: p. 697281.

  99. Zhang, T., et al. (2015). Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression. Biomaterials, 38, 72–85.

    Article  PubMed  Google Scholar 

  100. Li, C.W., et al., Mechanically induced formation and maturation of 3D-matrix adhesions (3DMAs) in human mesenchymal stem cells. Biomaterials, 2020. 258: p. 120292.

  101. Lin, X., et al., The Impact of Spaceflight and Simulated Microgravity on Cell Adhesion. Int J Mol Sci, 2020. 21(9).

  102. Lü, D., et al. (2019). Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite. The FASEB Journal, 33(3), 4273–4286.

    Article  PubMed  Google Scholar 

  103. Luo, B. H., Carman, C. V., & Springer, T. A. (2007). Structural basis of integrin regulation and signaling. Annual Review of Immunology, 25, 619–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Calderwood, D. A., Campbell, I. D., & Critchley, D. R. (2013). Talins and kindlins: Partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology, 14(8), 503–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Steward, A. J., Wagner, D. R., & Kelly, D. J. (2014). Exploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression. Journal of the mechanical behavior of biomedical materials, 38, 174–182.

    Article  CAS  PubMed  Google Scholar 

  106. Shahmoradi, S. R., et al. (2019). Induction of Chondrogenic Differentiation in Human Mesenchymal Stem Cells Cultured on Human Demineralized Bone Matrix Scaffold under Hydrostatic Pressure. Tissue Eng Regen Med, 16(1), 69–80.

    Article  CAS  PubMed  Google Scholar 

  107. Kang, J. M., et al. (2020). Characterization of cell signaling, morphology, and differentiation potential of human mesenchymal stem cells based on cell adhesion mechanism. Journal of Cellular Physiology, 235(10), 6915–6928.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 31201052). The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 31201052). The authors confirm independence from the sponsors; the content of the article has not been influenced by the sponsors.

Author information

Authors and Affiliations

Authors

Contributions

Lei Wang, Fuwen Zheng, Ruixue Song, and Lequan Zhuang participated in the writing. Fuwen Zheng and Lequan Zhuang designed and prepared the figures. Fuwen Zheng and Ruixue Song designed and prepared the tables. Fuwen Zheng and Jian Suo was in charge of proofreading manuscripts. Lisha Li, Jian Suo and Ming Yang designed and polished the paper.

Corresponding authors

Correspondence to Ming Yang, Jian Suo or Lisha Li.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The fate of cell is regulated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zheng, F., Song, R. et al. Integrins in the Regulation of Mesenchymal Stem Cell Differentiation by Mechanical Signals. Stem Cell Rev and Rep 18, 126–141 (2022). https://doi.org/10.1007/s12015-021-10260-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10260-5

Keywords

Navigation