Skip to main content
Log in

Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues

Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Compared to embryonic and induced pluripotent stem cells, mesenchymal stem/stromal cells (MSCs) have made their presence felt with good therapeutic promise and safety profile. Transplanting MSCs has successfully helped to reverse infertility and resulted in live births in animal models and also in humans. But the underlying mechanism for their therapeutic potential is not yet clear. MSCs are not pluripotent and hence lack plasticity to differentiate into multiple adult cell types. They rather act as ‘paracrine providers’ to the tissue-resident stem cells since similar beneficial effects are also observed when their secretome (microvesicles or exosomes) is transplanted. Cytokines, growth factors, signaling lipids, mRNAs, and miRNAs secreted by MSCs enables tissue-resident stem cells to undergo differentiation into specific cell types. Tissue-resident stem cells include pluripotent, very small embryonic-like stem cells (VSELs) and progenitors [spermatogonial (SSCs), ovarian (OSCs) and endometrial (EnSCs) stem cells in testes, ovary and uterus respectively] which function in a subtle manner to maintain life-long tissue homeostasis and regenerate damaged (non-functional) reproductive tissues by differentiating into sperm, oocytes and endometrial epithelial cells respectively. Similar to restoring spermatogenesis, primordial follicles numbers are increased upon transplanting MSCs. Published literature suggests that MSCs do not differentiate into epithelial cells in the endometrium. Nuclear OCT-4 positive VSELs and cytoplasmic OCT-4, AXIN2 and KERATIN-19 positive epithelial progenitors have a greater role during endometrial regeneration. We propose, transplantation of MSCs simply provides growth factors/cytokines essential for the tissue-resident stem/progenitor cells to undergo differentiation into sperm, eggs and endometrial epithelial cells in the reproductive tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Li, L., & Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science, 327(5965), 542–545. https://doi.org/10.1126/science.1180794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goodell, M. A., Nguyen, H., & Shroyer, N. (2015). Somatic stem cell heterogeneity: Diversity in the blood, skin and intestinal stem cell compartments. Nature Reviews Molecular Cell Biology, 16(5), 299–309. https://doi.org/10.1038/nrm3980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Rosa, L., & De Luca, M. (2012). Cell biology: Dormant and restless skin stem cells. Nature., 489(7415), 215–7. https://doi.org/10.1038/489215a.

    Article  CAS  PubMed  Google Scholar 

  4. Clevers, H., & Watt, F. M. (2018). Defining adult stem cells by function, not by phenotype. Annual Review of Biochemistry, 20(87), 1015–1027. https://doi.org/10.1146/annurev-biochem-062917-012341.

    Article  CAS  Google Scholar 

  5. Post, Y., & Clevers, H. (2019). Defining adult stem cell function at its simplest: The ability to replace lost cells through mitosis. Cell Stem Cell, 25(2), 174–183. https://doi.org/10.1016/j.stem.2019.07.002.

    Article  CAS  PubMed  Google Scholar 

  6. Karthaus, W. R., Hofree, M., Choi, D., Linton, E. L., Turkekul, M., Bejnood, A., et al. (2020). Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 368, 497–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhartiya, D. (2021). Adult tissue-resident stem cells-fact or fiction? Stem Cell Research & Therapy, 12(1), 73. https://doi.org/10.1186/s13287-021-02142-x.

    Article  Google Scholar 

  8. Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., et al. (2020). Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nature Communications, 11, 1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo, J., Nie, X., Giebler, M., Mlcochova, H., Wang, Y., et al. (2020). The dynamic transcriptional cell atlas of testis development during human puberty. Cell Stem Cell, 26, 262–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mucenski, M. L., Mahoney, R., Adam, M., Potter, A. S., & Potter, S. S. (2019). Single cell RNA-seq study of wild type and Hox 9,10,11 mutant developing uterus. Science and Reports, 9, 4557.

    Article  CAS  Google Scholar 

  11. Bhartiya D, Kausik A, Singh P, Sharma D (2021) Will single-cell RNAseq decipher stem cells biology in normal and cancerous tissues? Hum Reprod Update, 27(2), 421. https://doi.org/10.1093/humupd/dmaa058.

  12. Bhartiya, D., & Sharma, D. (2020). Ovary does harbor stem cells-size of the cells matter! Journal of Ovarian Research, 13(1), 39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh, P., & Bhartiya, D. (2020). Pluripotent stem (VSELs) and progenitor (EnSCs) cells exist in adult mouse uterus and show cyclic changes across estrus cycle. Reproductive Sciences, 28(1), 278–290.

    Article  PubMed  CAS  Google Scholar 

  14. Bhartiya, D., Ali Mohammad, S., Guha, A., Singh, P., Sharma, D., & Kaushik, A. (2019). Evolving definition of adult stem/progenitor cells. Stem Cell Reviews and Reports, 15(3), 456–458.

    Article  PubMed  Google Scholar 

  15. Kaushik, A., & Bhartiya, D. (2020). Additional evidence to establish existence of two stem cell populations including VSELs and SSCs in adult mouse testes. Stem Cell Reviews and Reports, 16, 992–1004.

    Article  CAS  PubMed  Google Scholar 

  16. Parte, S., Patel, H., Sriraman, K., & Bhartiya, D. (2015). Isolation and characterization of stem cells in the adult mammalian ovary. Methods in Molecular Biology, 1235, 203–229.

    Article  CAS  PubMed  Google Scholar 

  17. Mohammad, S. A., Metkari, S., & Bhartiya, D. (2020). Mouse pancreas stem/progenitor cells get augmented by streptozotocin and regenerate diabetic pancreas after partial pancreatectomy. Stem Cell Reviews and Reports, 16, 144–158.

    Article  PubMed  Google Scholar 

  18. Ratajczak, M. Z., Ratajczak, J., & Kucia, M. (2019). Very small embryonic-like stem cells (VSELs): An update and future directions. Circulation Research, 124, 208–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhartiya, D., Shaikh, A., Anand, S., Patel, H., Kapoor, S., Sriraman, K., et al. (2016). Endogenous, very small embryonic-like stem cells: Critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23, 41–76.

    Article  PubMed  CAS  Google Scholar 

  20. Bhartiya, D., Patel, H., Ganguly, R., Shaikh, A., Shukla, Y., Sharma, D., et al. (2018). Novel insights into adult and cancer stem cell biology. Stem Cells and Development, 27, 1527–1539.

    Article  PubMed  Google Scholar 

  21. Bhartiya, D. (2019). Clinical translation of stem cells for regenerative medicine. Circulation Research, 124(6), 840–842.

    Article  CAS  PubMed  Google Scholar 

  22. Bhartiya, D. (2017). Pluripotent stem cells in adult tissues: Struggling to be acknowledged over two decades. Stem Cell Reviews and Reports, 13(6), 713–724. https://doi.org/10.1007/s12015-017-9756-y.

    Article  CAS  PubMed  Google Scholar 

  23. Crisan, M., Yap, S., Casteilla, L., Chen, C. W., Corselli, M., Park, T. S., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 3, 301–313.

    Article  CAS  PubMed  Google Scholar 

  24. Kfoury, Y., & Scadden, D. T. (2015). Mesenchymal cell contributions to the stem cell niche. Cell Stem Cell, 16(3), 239–253. https://doi.org/10.1016/j.stem.2015.02.019.

    Article  CAS  PubMed  Google Scholar 

  25. Morrison, S. J., & Spradling, A. C. (2008). Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell, 132(4), 598–611. https://doi.org/10.1016/j.cell.2008.01.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ehninger, A., & Trumpp, A. (2011). The bone marrow stem cell niche grows up: Mesenchymal stem cells and macrophages move in. Journal of Experimental Medicine, 208, 421–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Luca, L., Trino, S., Laurenzana, I., Lamorte, D., Caivano, A., Del Vecchio, L., et al. (2017). Mesenchymal stem cell derived extracellular vesicles: A role in hematopoietic transplantation? International Journal of Molecular Sciences, 18, 1022.

    Article  PubMed Central  CAS  Google Scholar 

  28. Crippa, S., & Bernardo, M. E. (2018). Mesenchymal stromal cells: role in the BM niche and in the support of hematopoietic stem cell transplantation. Hemasphere., 2, e151.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frenette, P. S., Pinho, S., Lucas, D., & Scheiermann, C. (2013). Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annual Review of Immunology, 31, 285–316.

    Article  PubMed  Google Scholar 

  30. Caplan, A. I. (2008). All MSCs are pericytes? Cell Stem Cell, 3, 229–230.

    Article  CAS  PubMed  Google Scholar 

  31. Gotts, J. E., & Matthay, M. A. (2012). Mesenchymal stem cells and the stem cell niche: A new chapter. American Journal of Physiology. Lung Cellular and Molecular Physiology, 302(11), L1147–L1149. https://doi.org/10.1152/ajplung.00122.2012.

    Article  CAS  PubMed  Google Scholar 

  32. Esfandyari, S., Elkafas, H., Chugh, R. M., Park, H. S., Navarro, A., & Al-Hendy, A. (2021). Exosomes as biomarkers for female reproductive diseases diagnosis and therapy. International Journal of Molecular Sciences, 22(4), 2165. https://doi.org/10.3390/ijms22042165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chang, C., Yan, J., Yao, Z., Zhang, C., Li, X., & Mao, H. Q. (2021). Effects of mesenchymal stem cell-derived paracrine signals and their delivery strategies. Adv Healthc Mater., 10(7), e2001689. https://doi.org/10.1002/adhm.202001689.

    Article  CAS  PubMed  Google Scholar 

  34. Esfandyari, S., Chugh, R. M., Park, H. S., Hobeika, E., Ulin, M., & Al-Hendy, A. (2020). Mesenchymal stem cells as a bio-organ for treatment of female infertility. Cells, 9(10), 2253.

    Article  CAS  PubMed Central  Google Scholar 

  35. Fazeli, Z., Abedindo, A., Omrani, M. D., & Ghaderian, S. M. H. (2018). Mesenchymal stem cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Reviews and Reports, 14(1), 1–12. https://doi.org/10.1007/s12015-017-9765-x.

    Article  CAS  PubMed  Google Scholar 

  36. Zhao, Y. X., Chen, S. R., Su, P. P., Huang, F. H., Shi, Y. C., Shi, Q. Y., & Lin, S. (2019). Using mesenchymal stem cells to treat female infertility: An update on female reproductive diseases. Stem Cells International, 6(2019), 9071720. https://doi.org/10.1155/2019/9071720.

    Article  CAS  Google Scholar 

  37. Ratajczak, M. Z., Bujko, K., Mack, A., Kucia, M., & Ratajczak, J. (2018). Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia, 32(12), 2519–2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taichman, R. S., Wang, Z., Shiozawa, Y., Jung, Y., Song, J., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells and Development, 19(10), 1557–1570. https://doi.org/10.1089/scd.2009.0445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Virant-Klun, I., & Stimpfel, M. (2016). Novel population of small tumor-initiating stem cells in the ovaries of women with borderline ovarian cancer. Science and Reports, 6, 34730.

    Article  CAS  Google Scholar 

  40. Kaushik, A., & Bhartiya, D. (2018). Pluripotent very small embryonic-like stem cells in adult testes - an alternate premise to explain testicular germ cell tumors. Stem Cell Reviews and Reports, 14(6), 793–800.

    Article  CAS  PubMed  Google Scholar 

  41. Martin, J. J., Woods, D. C., & Tilly, J. L. (2019). Implications and current limitations of oogenesis from female germline or oogonial stem cells in adult mammalian ovaries. Cells, 8, 93.

    Article  CAS  PubMed Central  Google Scholar 

  42. Virant-Klun, I., Zech, N., Rozman, P., Vogler, A., Cvjeticanin, B., Klemenc, P., Malicev, E., & Meden-Vrtovec, H. (2008). Putative stem cells with an embryonic character isolated from the ovarian surface epithelium of women with no naturally present follicles and oocytes. Differentiation, 76(8), 843–856.

    Article  CAS  PubMed  Google Scholar 

  43. Silvestris, E., D’Oronzo, S., Cafforio, P., Kardhashi, A., Dellino, M., & Cormio, G. (2019). In vitro generation of oocytes from ovarian stem cells (OSCs): In search of major evidence. International Journal of Molecular Sciences, 20(24), 6225.

    Article  PubMed Central  Google Scholar 

  44. Clarkson, Y. L., McLaughlin, M., Waterfall, M., et al. (2018). Initial characterisation of adult human ovarian cell populations isolated by DDX4 expression and aldehyde dehydrogenase activity. Science and Reports, 8, 6953.

    Article  CAS  Google Scholar 

  45. Anand, S., Bhartiya, D., Sriraman, K., & Mallick, A. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews and Reports., 12, 682–697.

    Article  CAS  PubMed  Google Scholar 

  46. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.

    Article  CAS  PubMed  Google Scholar 

  47. Bhartiya, D., Kasiviswanathan, S., Unni, S. K., Pethe, P., Dhabalia, J. V., et al. (2010). Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. Journal of Histochemistry and Cytochemistry, 58(12), 1093–1106. https://doi.org/10.1369/jhc.2010.956870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gunjal, P., Bhartiya, D., Metkari, S., Manjramkar, D., & Patel, H. (2015). Very small embryonic-like stem cells are the elusive mouse endometrial stem cells–a pilot study. Journal of Ovarian Research, 8, 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. James, K., Bhartiya, D., Ganguly, R., Kaushik, A., Gala, K., Singh, P., et al. (2018). Gonadotropin and steroid hormones regulate pluripotent very small embryonic-like stem cells in adult mouse uterine endometrium. Journal of Ovarian Research, 11, 83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhartiya, D., & James, K. (2017). Very small embryonic-like stem cells (VSELs) in adult mouse uterine perimetrium and myometrium. Journal of Ovarian Research, 10, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Bhartiya, D., Anand, S., & Kaushik, A. (2020). Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26, 136–137.

    Article  PubMed  Google Scholar 

  52. Sharma, S., Wistuba, J., Neuhaus, N., & Schlatt, S. (2020). Reply: Pluripotent very small embryonic-like stem cells co-exist along with spermatogonial stem cells in adult mammalian testis. Human Reproduction Update, 26, 138.

    Article  PubMed  Google Scholar 

  53. Ganguly, R., Anand, S., Metkari, S., & Bhartiya, D. (2020). Effect of aging and 5-fluorouracil treatment on bone marrow stem cell dynamics. Stem Cell Reviews and Reports, 16, 909–921.

    Article  CAS  PubMed  Google Scholar 

  54. Shaikh, A., Anand, S., Kapoor, S., Ganguly, R., & Virant-Klun, D. (2017). Mouse bone marrow VSELs exhibit differentiation into three embryonic germ lineages and germ & hematopoietic cells in culture. Stem Cell Reviews and Reports, 13(202), 16.zsA.

    Google Scholar 

  55. Sriraman, K., Bhartiya, D., Anand, S., & Bhutda, S. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22, 884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gomez-Salazar, M., Gonzalez-Galofre, Z. N., Casamitjana, J., Crisan, M., James, A. W., & Péault, B. (2020). Five decades later, are mesenchymal stem cells still relevant? Frontiers Bioengineering Biotechnology., 8, 148.

    Article  Google Scholar 

  57. Guimaraes-Camboa, N., Cattaneo, P., Sun, Y., Moore-Morris, T., Gu, Y., Dalton, N. D., et al. (2017). Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell, 20, 345–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pittenger, M. F., Discher, D. E., Péault, B. M., Phinney, D. G., Hare, J. M., & Caplan, A. I. (2019). Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regenerative Medicine., 4, 22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Sagaradze, G. D., Basalova, N. A., Efimenko, A. Y., & Tkachuk, V. A. (2020). Mesenchymal stromal cells as critical contributors to tissue regeneration. Front Cell Developmental Biology., 8, 576176.

    Article  Google Scholar 

  60. Qian, C., Meng, Q., Lu, J., Zhang, L., Li, H., & Huang, B. (2020). Human amnion mesenchymal stem cells restore spermatogenesis in mice with busulfan-induced testis toxicity by inhibiting apoptosis and oxidative stress. Stem Cell Research & Therapy, 11(1), 290.

    Article  CAS  Google Scholar 

  61. Liu, C., Yin, H., Jiang, H., Du, X., Wang, C., Liu, Y., et al. (2020). Extracellular vesicles derived from mesenchymal stem cells recover fertility of premature ovarian insufficiency mice and the effects on their offspring. Cell Transplantation, 29, 963689720923575.

    Article  PubMed  Google Scholar 

  62. Un, B. C., Akpolat, M., & Un, B. (2020). Can mesenchymal stem cells ameliorate testicular damage Current researches? Journal of Surgery and Medicine, 4(7), 603–607.

    Article  Google Scholar 

  63. Shen YC, Larose H, Shami AN , Moritz L, Gabriel L et al. (2021). Tcf21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration. Nature Communications, 12(1), 3876. https://doi.org/10.1101/2020.05.02.074518.

  64. Sagaradze, G., Grigorieva, O., Nimiritsky, P., Basalova, N., Kalinina, N., Akopyan, Z., & Efimenko, A. (2019). Conditioned medium from human mesenchymal stromal cells: Towards the clinical translation. International Journal of Molecular Sciences, 20(7), 1656.

    Article  CAS  PubMed Central  Google Scholar 

  65. Kurkure, P., Prasad, M., Dhamankar, V., & Bakshi, G. (2015). Very small embryonic-like stem cells (VSELs) detected in azoospermic testicular biopsies of adult survivors of childhood cancer. Reproductive Biology and Endocrinology, 9(13), 122. https://doi.org/10.1186/s12958-015-0121-1.

    Article  CAS  Google Scholar 

  66. Gabr, H., & Elkheir, W. A. (2015). Autologous MSC therapy for azoospermia: a pilot clinical study. Cytotherapy, 17(Suppl), 51.

    Google Scholar 

  67. Zhankina, R., Baghban, N., Askarov, M., Saipiyeva, D., Ibragimov, A., et al. (2021). Mesenchymal stromal/stem cells and their exosomes for restoration of spermatogenesis in non-obstructive azoospermia: A systemic review. Stem Cell Research & Therapy, 12(1), 229. https://doi.org/10.1186/s13287-021-02295-9.

    Article  Google Scholar 

  68. Edessy, M., Hosni, H. N., Shady, Y., Waf, Y., Bakr, S., & Kamel, M. (2016). Autologous stem cells therapy, The first baby of idiopathic premature ovarian failure. Acta Medical international, 3, 19–23.

    Article  Google Scholar 

  69. Igboeli, P., El Andaloussi, A., Sheikh, U., et al. (2020). Intraovarian injection of autologous human mesenchymal stem cells increases estrogen production and reduces menopausal symptoms in women with premature ovarian failure: two case reports and a review of the literature. Journal of Medical Case Reports, 14, 108.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Q., Bu, S., Sun, J., et al. (2017). Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Research & Therapy, 8, 270.

    Article  CAS  Google Scholar 

  71. Bhartiya, D., & Patel, H. (2018). Ovarian stem cells-resolving controversies. Journal of Assisted Reproduction and Genetics, 35(3), 393–398.

    Article  PubMed  Google Scholar 

  72. Parte, S., Bhartiya, D., Telang, J., Daithankar, V., Salvi, V., Zaveri, K., & Hinduja, I. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells and Development, 20(8), 1451–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang, Z., Wang, Y., Yang, T., Li, J., & Yang, X. (2017). Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice [published correction appears in Stem Cell Res Ther. 2017;8(1):49]. Stem Cell Research & Therapy, 8(1), 11.

    Article  CAS  Google Scholar 

  74. Zhao, Y., Ma, J., Yi, P., et al. (2020). Human umbilical cord mesenchymal stem cells restore the ovarian metabolome and rescue premature ovarian insufficiency in mice. Stem Cell Research & Therapy, 11, 466.

    Article  CAS  Google Scholar 

  75. Hong, L., Yan, L., Xin, Z., Hao, J., Liu, W., Wang, S., et al. (2020). Protective effects of human umbilical cord mesenchymal stem cell-derived conditioned medium on ovarian damage. Journal of Molecular Cell Biology, 12(5), 372–385.

    Article  CAS  PubMed  Google Scholar 

  76. Li, J., Mao, Q., He, J., She, H. Q., Zhang, Z., & Yin, C. Y. (2017). Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Research & Therapy, 8(1), 55.

    Article  CAS  Google Scholar 

  77. Cousins, F. L., Pandoy, R., Jin, S., & Gargett, C. E. (2021). The elusive endometrial epithelial stem/progenitor cells. Frontiers Cell Developmental Biology., 9, 640319. https://doi.org/10.3389/fcell.2021.640319.

    Article  Google Scholar 

  78. Santamaria, X., Mas, A., Cervelló, I., Taylor, H., & Simon, C. (2018). Uterine stem cells: From basic research to advanced cell therapies. Human Reproduction Update, 24(6), 673–693.

    Article  CAS  PubMed  Google Scholar 

  79. Taylor, H. S. (2004). Endometrial cells derived from donor stem cells in bone marrow transplant recipients. JAMA, 292(1), 81–85.

    Article  CAS  PubMed  Google Scholar 

  80. Bozorgmehr, M., Gurung, S., Darzi, S., Nikoo, S., Kazemnejad, S., Zarnani, A. H., et al. (2020). Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application. Frontiers in Cell and Development Biology, 8, 497.

    Article  Google Scholar 

  81. Gargett, C. E., Schwab, K. E., & Deane, J. A. (2016). Endometrial stem/progenitor cells: The first 10 years. Human Reproduction Update, 22(2), 137–163.

    CAS  PubMed  Google Scholar 

  82. Ghosh, A., Syed, S. M., Kumar, M., Carpenter, T. J., Teixeira, J. M., et al. (2020). In vivo cell fate tracing provides no evidence for mesenchymal to epithelial transition in adult fallopian tube and uterus. Cell Reports, 31(6), 107631. https://doi.org/10.1016/j.celrep.2020.107631.

    Article  CAS  PubMed  Google Scholar 

  83. Bhartiya, D. (2016). An update on endometrial stem cells and progenitors. Human Reproduction Update, 22, 529–530.

    Article  PubMed  Google Scholar 

  84. Gargett, C. E., Deane, J. A., & Schwab, K. E. (2016). Reply: An update on endometrial stem cells and progenitors by Deepa Bhartiya. Hum Reprod Update, 22(4), 530–1. https://doi.org/10.1093/humupd/dmw011Ogawa.

    Article  CAS  PubMed  Google Scholar 

  85. LaRue M, A. C., & Mehrotra, M. (2013). Hematopoietic stem cells are pluripotent and not just “hematopoietic.” Blood Cells, Molecules & Diseases, 51(1), 3–8.

    Article  Google Scholar 

  86. Horwitz, E. M. (2003). Stem cell plasticity: A new image of the bone marrow stem cell. Current Opinion in Pediatrics, 15(1), 32–37.

    Article  PubMed  Google Scholar 

  87. Graf, T. (2002). Differentiation plasticity of hematopoietic cells. Blood, 99(9), 3089–3101.

    Article  CAS  PubMed  Google Scholar 

  88. Krause, D. S. (2002). Plasticity of marrow-derived stem cells. Gene Therapy, 9(11), 754–758.

    Article  CAS  PubMed  Google Scholar 

  89. Kassmer, S. H., Bruscia, E. M., Zhang, P. X., & Krause, D. S. (2012). Nonhematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. Stem Cells, 30(3), 491–499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ciechanowicz, A. K., Sielatycka, K., Cymer, M., Skoda M,Suszy ´nska M, , et al. (2021). Bone marrow-derived VSELs engraft as lung epithelial progenitor cells after bleomycin-induced lung injury. Cells, 10, 1570. https://doi.org/10.3390/cells10071570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bhartiya, D. (2013). Are mesenchymal cells indeed pluripotent stem cells or just stromal cells? OCT-4 and VSELs biology has led to better understanding. Stem Cells International, 2013(2013), 547501.

    PubMed  PubMed Central  Google Scholar 

  92. Dezawa, M. (2016). Muse cells provide the pluripotency of mesenchymal stem cells: Direct contribution of Muse cells to tissue regeneration. Cell Transplantation, 25(5), 849–861.

    Article  PubMed  Google Scholar 

  93. Deane, J. A., Ong, Y., Cousins, F. L., & Gargett, C. E. (2019). Bone marrow-derived endometrial cells: Trans-differentiation or misidentification? Hum Reprod Update., 25(2), 272–274.

    Article  CAS  PubMed  Google Scholar 

  94. Santamaria, X., Mas, A., Cervelló, I., Taylor, H. S., & Simon, C. (2019). Reply: Bone marrow-derived endometrial cells: What you see is what you get. Human Reproduction Update, 25(2), 274–275.

    Article  PubMed  CAS  Google Scholar 

  95. Morelli, S. S., Rameshwar, P., & Goldsmith, L. T. (2013). Experimental evidence for bone marrow as a source of nonhematopoietic endometrial stromal and epithelial compartment cells in a murine model. Biology of Reproduction, 89(1), 7. https://doi.org/10.1095/biolreprod.113.107987.

    Article  CAS  PubMed  Google Scholar 

  96. Yi, K. W., Mamillapalli, R., Sahin, C., Song, J., Tal, R., & Taylor, H. S. (2019). Bone marrow-derived cells or C-X-C motif chemokine 12 (CXCL12) treatment improve thin endometrium in a mouse model. Biology of Reproduction, 100(1), 61–70.

    Article  PubMed  Google Scholar 

  97. Syed, S. M., Kumar, M., Ghosh, A., et al. (2020). Endometrial Axin2+ cells drive epithelial homeostasis, regeneration, and cancer following oncogenic transformation. Cell Stem Cell, 26(1), 64–80.

    Article  CAS  PubMed  Google Scholar 

  98. Jin, S. (2019). Bipotent stem cells support the cyclical regeneration of endometrial epithelium of the murine uterus. Proc Natl Acad Sci U S A., 116(14), 6848–6857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nagori, C. B., Panchal, S. Y., & Patel, H. (2011). Endometrial regeneration using autologous adult stem cells followed by conception by in vitro fertilization in a patient of severe Asherman’s syndrome. Journal of Human Reproductive Sciences., 4(1), 43–48.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Santamaria, X., Cabanillas, S., Cervelló, I., Arbona, C., Raga, F., Ferro, J., et al. (2016). Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman’s syndrome and endometrial atrophy: A pilot cohort study. Human Reproduction, 31(5), 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  101. Tan, J., Li, P., Wang, Q., Li, Y., Li, X., Zhao, D., et al. (2016). Autologous menstrual blood-derived stromal cells transplantation for severe Asherman’s syndrome. Human Reproduction, 31(12), 2723–2729.

    Article  PubMed  Google Scholar 

  102. Ma, H., Liu, M., Li, Y., Wang, W., Yang, K., Lu, L., et al. (2020). Intrauterine transplantation of autologous menstrual blood stem cells increases endometrial thickness and pregnancy potential in patients with refractory intrauterine adhesion. The Journal of Obstetrics and Gynaecology Research, 46, 2347–2355.

    Article  PubMed  Google Scholar 

  103. Ho, C. H., Lan, C. W., Liao, C. Y., Hung, S. C., Li, H. Y., & Sung, Y. J. (2018). Mesenchymal stem cells and their conditioned medium can enhance the repair of uterine defects in a rat model. Journal of the Chinese Medical Association, 81(3), 268–276.

    Article  PubMed  Google Scholar 

  104. Ebrahim, N., Mostafa, O., El Dosoky, R. E., et al. (2018). Human mesenchymal stem cell-derived extracellular vesicles/estrogen combined therapy safely ameliorates experimentally induced intrauterine adhesions in a female rat model. Stem Cell Research & Therapy, 9, 175.

    Article  CAS  Google Scholar 

  105. Benor, A., Gay, S., & De Cherney, A. (2020). An update on stem cell therapy for Asherman syndrome. Journal of Assisted Reproduction and Genetics, 37, 1511–1529.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Rungsiwiwut R, Ingrungruanglert P, Numchaisrika P, Virutamasen P, Phermthai T, Pruksananonda K (2016) Human umbilical cord blood-derived serum for culturing the supportive feeder cells of human pluripotent stem cell lines. Stem Cells International.https://doi.org/10.1155/2016/4626048.

  107. Marinaro, F., Gómez-Serrano, M., Jorge, I., Silla-Castro, J. C., Vázquez, J., Sánchez-Margallo, F. M., et al. (2019). Unraveling the molecular signature of extracellular vesicles from endometrial-derived mesenchymal stem cells: Potential modulatory effects and therapeutic applications. Front Bioeng Biotechnol., 7, 431.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Cao, Y., Sun, H., Zhu, H., Zhu, X., Tang, X., Yan, G., et al. (2018). Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: A phase I clinical trial. Stem Cell Research & Therapy, 9(1), 192.

    Article  Google Scholar 

  109. Bazoobandi S, Tanideh N, Rahmanifar F, Zare S et al (2020) Preventive effects of intrauterine injection of bone marrow-derived mesenchymal stromal cell-conditioned media on uterine fibrosis immediately after endometrial curettage in rabbit. Stem Cells International. https://doi.org/10.1155/2020/8849537.

Download references

Acknowledgements

The authors acknowledge contributions of Seema Parte and Hiren Patel for their work on ovarian stem cells; Sreepoorna Unni, Sandhya Anand and Hiren Patel for their work on testicular stem cells and Pranesh Gunjal, Kreema James and Kavita Gala towards better understanding of uterine stem cells. Core support to the Department is provided by Indian Council of Medical Research, Government of India, New Delhi, India.

Funding

Core support to the Department is provided by Indian Council of Medical Research, Government of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

DB, PS, DS and AK discussed and wrote the article together.

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Institute accession number is OTH/991/11–2020.

Conflicts of interest/Competing interests

Authors declare no conflict of interest whatsoever.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Tissue-resident Stem/Progenitor Cells Endowed with Broader Germ Layer Specification Potential in Normal and Cancerous Tissues

Guest Editor: Deepa Bhartiya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhartiya, D., Singh, P., Sharma, D. et al. Very small embryonic-like stem cells (VSELs) regenerate whereas mesenchymal stromal cells (MSCs) rejuvenate diseased reproductive tissues. Stem Cell Rev and Rep 18, 1718–1727 (2022). https://doi.org/10.1007/s12015-021-10243-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10243-6

Keywords

Navigation