Skip to main content

Advertisement

Log in

Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells’ Role in Tumor Progression

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Tumor invasion and metastasis remain the leading causes of mortality for patients with cancer despite current treatment strategies. In some cancer types, recurrence is considered inevitable due to the lack of effective anti-metastatic therapies. Recent studies across many cancer types demonstrate a close relationship between cancer-initiating cells (CICs) and metastasis, as well as general cancer progression. First, this review describes CICs’ contribution to cancer progression. Then we discuss our recent understanding of mechanisms through which CICs promote tumor invasion and metastasis by examining the role of CICs in each stage. Finally, we examine the current understanding of CICs’ contribution to therapeutic resistance and recent developments in CIC-targeting drugs. We believe this understanding is key to advancing anti-CIC clinical therapeutics.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Zakrzewski, W., et al. (2019). Stem cells: Past, present, and future. Stem cell Research & Therapy, 10(1), 1–22.

    Article  Google Scholar 

  2. Lau, K. X., et al. (2020). Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal. Nature Communications, 11(1), 1–18.

    Article  Google Scholar 

  3. Tu, S.-M., Lin, S.-H., & Logothetis, C. J. (2002). Stem-cell origin of metastasis and heterogeneity in solid tumours. The Lancet Oncology, 3(8), 508–513.

    Article  CAS  PubMed  Google Scholar 

  4. Guo, L., et al. (2011). Selection of brain metastasis-initiating breast cancer cells determined by growth on hard agar. The American Journal of Pathology, 178(5), 2357–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li, S., & Li, Q. (2014). Cancer stem cells and tumor metastasis. International Journal of Oncology, 44(6), 1806–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shiozawa, Y., et al. (2013). Cancer stem cells and their role in metastasis. Pharmacology & Therapeutics, 138(2), 285–293.

    Article  CAS  Google Scholar 

  7. Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.

    Article  CAS  PubMed  Google Scholar 

  8. Reya, T., et al. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.

    Article  CAS  PubMed  Google Scholar 

  9. Lytle, N. K., Barber, A. G., & Reya, T. (2018). Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer, 18(11), 669–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kimbrel, E. A., & Lanza, R. (2020). Next-generation stem cells—ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery, 9, 463–479. https://doi.org/10.1038/s41573-020-0064-x

  11. Ermolaeva, M., et al. (2018). Cellular and epigenetic drivers of stem cell ageing. Nature Reviews Molecular Cell Biology, 19(9), 594.

    Article  CAS  PubMed  Google Scholar 

  12. Becker, A. J., McCulloch, E. A., & Till, J. E. (1963). Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature, 197(4866), 452–454.

    Article  CAS  PubMed  Google Scholar 

  13. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  14. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.

    Article  CAS  Google Scholar 

  15. Thomson, J. A., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  16. Watt, F. M., & Driskell, R. R. (2010). The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 155–163.

    Article  Google Scholar 

  17. Takahashi, K., & Yamanaka, S. (2013). Induced pluripotent stem cells in medicine and biology. Development, 140(12), 2457–2461.

    Article  CAS  PubMed  Google Scholar 

  18. Shen, Q., et al. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science, 304(5675), 1338–1340.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. X., Dumont, N. A., & Rudnicki, M. A. (2014). Muscle stem cells at a glance. The Company of Biologists Ltd.

    Book  Google Scholar 

  20. Fukada, S. I., et al. (2007). Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells, 25(10), 2448–2459.

    Article  CAS  PubMed  Google Scholar 

  21. Gnocchi, V. F., et al. (2009). Further characterisation of the molecular signature of quiescent and activated mouse muscle satellite cells. PLoS One, 4(4), e5205.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ng, A., & Barker, N. (2015). Ovary and fimbrial stem cells: Biology, niche and cancer origins. Nature Reviews Molecular Cell Biology, 16(10), 625–638.

    Article  CAS  PubMed  Google Scholar 

  23. Barker, N., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  24. Park, D., Sykes, D. B., & Scadden, D. T. (2012). The hematopoietic stem cell niche. Frontiers in Bioscience (Landmark Edition), 17, 30.

    Article  CAS  Google Scholar 

  25. Garg, S., Madkaikar, M., & Ghosh, K. (2013). Investigating cell surface markers on normal hematopoietic stem cells in three different niche conditions. International Journal of Stem Cells, 6(2), 129.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morrison, S. J., & Scadden, D. T. (2014). The bone marrow niche for haematopoietic stem cells. Nature, 505(7483), 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morrison, S. J., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068–1074.

    Article  CAS  PubMed  Google Scholar 

  28. Fuchs, E., & Chen, T. (2013). A matter of life and death: Self-renewal in stem cells. EMBO Reports, 14(1), 39–48.

    Article  CAS  PubMed  Google Scholar 

  29. Jan, Y.-N., & Jan, L. Y. (2000). Polarity in cell division: What frames thy fearful asymmetry? Cell, 100(6), 599–602.

    Article  CAS  PubMed  Google Scholar 

  30. Ito, K., & Suda, T. (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nature Reviews Molecular Cell Biology, 15(4), 243–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: Asymmetric cell division and its implications for stem cells and cancer. Genes & Development, 23(23), 2675–2699.

    Article  Google Scholar 

  32. Shlyakhtina, Y., Moran, K. L., & Portal, M. M. (2019). Asymmetric inheritance of cell fate determinants: Focus on RNA. Non-Coding RNA, 5(2), 38.

    Article  CAS  PubMed Central  Google Scholar 

  33. Betschinger, J., Mechtler, K., & Knoblich, J. A. (2003). The Par complex directs asymmetric cell division by phosphorylating the cytoskeletal protein Lgl. Nature, 422(6929), 326–330.

    Article  CAS  PubMed  Google Scholar 

  34. Morin, X., & Bellaïche, Y. (2011). Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Developmental Cell, 21(1), 102–119.

    Article  CAS  PubMed  Google Scholar 

  35. Spradling, A., Drummond-Barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414(6859), 98–104.

    Article  CAS  PubMed  Google Scholar 

  36. Bigas, A., & Espinosa, L. (2012). Hematopoietic stem cells: To be or Notch to be. Blood, 119(14), 3226–3235.

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, A., & Radtke, F. (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Letters, 580(12), 2860–2868.

    Article  CAS  PubMed  Google Scholar 

  38. Jia, Y., Wang, Y., & Xie, J. (2015). The Hedgehog pathway: Role in cell differentiation, polarity and proliferation. Archives of Toxicology, 89(2), 179–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Oliver, T. G., et al. (2003). Transcriptional profiling of the Sonic hedgehog response: A critical role for N-myc in proliferation of neuronal precursors. Proceedings of the National Academy of Sciences, 100(12), 7331–7336.

    Article  CAS  Google Scholar 

  40. Jung, Y.-S., & Park, J.-I. (2020). Wnt signaling in cancer: therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Experimental & Molecular Medicine, 52, 183–191. https://doi.org/10.1038/s12276-020-0380-6

  41. Levy, V., et al. (2005). Distinct stem cell populations regenerate the follicle and interfollicular epidermis. Developmental Cell, 9(6), 855–861.

    Article  CAS  PubMed  Google Scholar 

  42. Selman, K., & Kafatos, F. C. (1974). Transdifferentiation in the labial gland of silk moths: Is DNA required for cellular metamorphosis? Cell Differentiation, 3(2), 81–94.

    Article  CAS  PubMed  Google Scholar 

  43. Slack, J. (1986). Epithelial metaplasia and the second anatomy. The Lancet, 328(8501), 268–271.

    Article  Google Scholar 

  44. Christoforou, N., et al. (2017). Core transcription factors, microRNAs, and small molecules drive transdifferentiation of human fibroblasts towards the cardiac cell lineage. Scientific Reports, 7(1), 1–15.

    Article  Google Scholar 

  45. Camargo, F. D., et al. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nature Medicine, 9(12), 1520–1527.

    Article  CAS  PubMed  Google Scholar 

  46. Aghajanian, P., & Mohan, S. (2018). The art of building bone: Emerging role of chondrocyte-to-osteoblast transdifferentiation in endochondral ossification. Bone Research, 6(1), 1–9.

    Article  CAS  Google Scholar 

  47. Slack, J. M. (2007). Metaplasia and transdifferentiation: From pure biology to the clinic. Nature Reviews Molecular Cell biology, 8(5), 369–378.

    Article  CAS  PubMed  Google Scholar 

  48. Slack, J. (1985). Homoeotic transformations in man: Implications for the mechanism of embryonic development and for the organization of epithelia. Journal of Theoretical Biology, 114(3), 463.

    Article  CAS  PubMed  Google Scholar 

  49. Mollinari, C., et al. (2018). Transdifferentiation: A new promise for neurodegenerative diseases. Cell Death & Disease, 9(8), 1–9.

    Article  CAS  Google Scholar 

  50. Silberg, D. G., et al. (2002). Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology, 122(3), 689–696.

    Article  CAS  PubMed  Google Scholar 

  51. Treviño, L. S., et al. (2020). Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nature Communications, 11(1), 1–14.

    Article  Google Scholar 

  52. Wahl, G. M., & Spike, B. T. (2017). Cell state plasticity, stem cells, EMT, and the generation of intra-tumoral heterogeneity. NPJ Breast Cancer, 3(1), 1–13.

    Article  CAS  Google Scholar 

  53. Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O’Flaherty, J. D., et al. (2012). The cancer stem-cell hypothesis: Its emerging role in lung cancer biology and its relevance for future therapy. Journal of Thoracic Oncology, 7(12), 1880–1890.

    Article  PubMed  Google Scholar 

  55. Borah, A., et al. (2015). Targeting self-renewal pathways in cancer stem cells: Clinical implications for cancer therapy. Oncogenesis, 4(11), e177–e177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Brabletz, T., et al. (2005). Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5(9), 744–749.

    Article  CAS  PubMed  Google Scholar 

  57. Moharil, R. B., et al. (2017). Cancer stem cells: An insight. Journal of Oral and Maxillofacial Pathology: JOMFP, 21(3), 463.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou, B.-B.S., et al. (2009). Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 8(10), 806–823.

    Article  CAS  PubMed  Google Scholar 

  59. Yu, Z., et al. (2012). Cancer Stem Cells. The international journal of biochemistry & cell biology, 44(12), 2144–2151.

    Article  CAS  Google Scholar 

  60. Qureshi-Baig, K., et al. (2017). Tumor-initiating cells: A criTICal review of isolation approaches and new challenges in targeting strategies. Molecular Cancer, 16(1), 40.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Visvader, J. E. (2011). Cells of origin in cancer. Nature, 469(7330), 314–322.

    Article  CAS  PubMed  Google Scholar 

  62. Shekhani, M. T., et al. (2013). Cancer stem cells and tumor transdifferentiation: Implications for novel therapeutic strategies. American Journal of Stem Cells, 2(1), 52.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Friedmann-Morvinski, D., & Verma, I. M. (2014). Dedifferentiation and reprogramming: Origins of cancer stem cells. EMBO Reports, 15(3), 244–253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, L., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5(1), 1–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bussolati, B., et al. (2009). Endothelial cell differentiation of human breast tumour stem/progenitor cells. Journal of Cellular and Molecular Medicine, 13(2), 309–319.

    Article  CAS  PubMed  Google Scholar 

  66. Uppal, A., et al. (2014). Investigation of the essential role of platelet-tumor cell interactions in metastasis progression using an agent-based model. Theoretical Biology and Medical Modelling, 11(1), 1–23.

    Article  Google Scholar 

  67. Bielenberg, D. R., & Zetter, B. R. (2015). The contribution of angiogenesis to the process of metastasis. Cancer Journal (Sudbury, Mass.), 21(4), 267.

    Article  CAS  Google Scholar 

  68. Zeidman, I. (1957). Metastasis: A review of recent advances. Cancer Research, 17(3), 157–162.

    CAS  PubMed  Google Scholar 

  69. Balic, M., et al. (2006). Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clinical Cancer Research, 12(19), 5615–5621.

    Article  CAS  PubMed  Google Scholar 

  70. Lucarelli, G., et al. (2015). Isolation and characterization of cancer stem cells in renal cell carcinoma. Urologia Journal, 82(1), 46–53.

    Article  PubMed  Google Scholar 

  71. Xie, L., et al. (2014). Isolation and identification of cancer stem cells from human LACC cell line. [Zhonghua yan ke za zhi] Chinese Journal of Ophthalmology, 50(10), 753–757.

    PubMed  Google Scholar 

  72. Song, E. (2010). Research progress of solid tumor stem cells. Journal of Sun Yat-sen University (Medical Sciences), 31(2), 172–178.

    CAS  Google Scholar 

  73. Liu, W.-H., et al. (2012). Interpretation of interlocking key issues of cancer stem cells in malignant solid tumors. Cellular Oncology, 35(6), 397–409.

    Article  Google Scholar 

  74. Wagenblast, E., et al. (2015). A model of breast cancer heterogeneity reveals vascular mimicry as a driver of metastasis. Nature, 520(7547), 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Castellón, E. A., et al. (2012). Molecular signature of cancer stem cells isolated from prostate carcinoma and expression of stem markers in different Gleason grades and metastasis. Biological Research, 45(3), 297–305.

    Article  PubMed  Google Scholar 

  76. Chen, S., Principessa, L., & Isaacs, J. T. (2012). Human prostate cancer initiating cells isolated directly from localized cancer do not form prostaspheres in primary culture. The Prostate, 72(13), 1478–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hou, J.-M., et al. (2012). Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. Journal of Clinical Oncology, 30(5), 525–532.

    Article  PubMed  Google Scholar 

  78. Zakikhani, M., et al. (2010). Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Research and Treatment, 123(1), 271–279.

    Article  CAS  PubMed  Google Scholar 

  79. Morel, A.-P., et al. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One, 3(8), e2888.

    Article  PubMed  PubMed Central  Google Scholar 

  80. El Hallani, S., et al. (2010). A new alternative mechanism in glioblastoma vascularization: Tubular vasculogenic mimicry. Brain, 133(4), 973–982.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shen, R., et al. (2008). Precancerous stem cells can serve as tumor vasculogenic progenitors. PLoS One, 3(2), e1652.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mathonnet, M., et al. (2014). Hallmarks in colorectal cancer: Angiogenesis and cancer stem-like cells. World Journal of Gastroenterology: WJG, 20(15), 4189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Atzori, M. G., et al. (2017). The anti-vascular endothelial growth factor receptor-1 monoclonal antibody D16F7 inhibits invasiveness of human glioblastoma and glioblastoma stem cells. Journal of Experimental & Clinical Cancer Research, 36(1), 1–15.

    Article  Google Scholar 

  84. Wieland, E., et al. (2017). Endothelial Notch1 activity facilitates metastasis. Cancer Cell, 31(3), 355–367.

    Article  CAS  PubMed  Google Scholar 

  85. Rosner, M., et al. (2017). Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nature Communications, 8(1), 1–16.

    Article  CAS  Google Scholar 

  86. You, N., et al. (2017). Tg737 acts as a key driver of invasion and migration in liver cancer stem cells and correlates with poor prognosis in patients with hepatocellular carcinoma. Experimental Cell Research, 358(2), 217–226.

    Article  CAS  PubMed  Google Scholar 

  87. Cao, W., et al. (2020). LGR5 marks targetable tumor-initiating cells in mouse liver cancer. Nature Communications, 11(1), 1–16.

    Article  Google Scholar 

  88. Haas, T. L., et al. (2017). Integrin α7 is a functional marker and potential therapeutic target in glioblastoma. Cell Stem Cell, 21(1), 35-50.e9.

    Article  CAS  PubMed  Google Scholar 

  89. Avril, T., et al. (2017). CD90 expression controls migration and predicts dasatinib response in glioblastoma. Clinical Cancer Research, 23(23), 7360–7374.

    Article  CAS  PubMed  Google Scholar 

  90. Shibue, T., & Weinberg, R. A. (2017). EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews Clinical oncology, 14(10), 611.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Winkler, F. (2015). The brain metastatic niche. Journal of Molecular Medicine, 93(11), 1213–1220.

    Article  CAS  PubMed  Google Scholar 

  92. Liao, J., et al. (2014). Ovarian cancer spheroid cells with stem cell-like properties contribute to tumor generation, metastasis and chemotherapy resistance through hypoxia-resistant metabolism. PLoS One, 9(1), e84941.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fong, M. Y., et al. (2015). Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nature Cell Biology, 17(2), 183–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, G., et al. (2010). CD133+ single cell-derived progenies of colorectal cancer cell line SW480 with different invasive and metastatic potential. Clinical & Experimental Metastasis, 27(7), 517–527.

    Article  Google Scholar 

  95. Chinn, S. B., et al. (2015). Cancer stem cells: Mediators of tumorigenesis and metastasis in head and neck squamous cell carcinoma. Head & Neck, 37(3), 317–326.

    Article  Google Scholar 

  96. Ayob, A. Z., & Ramasamy, T. S. (2018). Cancer stem cells as key drivers of tumour progression. Journal of Biomedical Science, 25(1), 1–18.

    Article  Google Scholar 

  97. Moreno-Bueno, G., Portillo, F., & Cano, A. (2008). Transcriptional regulation of cell polarity in EMT and cancer. Oncogene, 27(55), 6958–6969.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou, W., et al. (2014). Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 25(4), 501–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grange, C., et al. (2011). Microvesicles released from human renal cancer stem cells stimulate angiogenesis and formation of lung premetastatic niche. Cancer Research, 71(15), 5346–5356.

    Article  CAS  PubMed  Google Scholar 

  100. Desurmont, T., et al. (2015). Overexpression of chemokine receptor CXCR 2 and ligand CXCL 7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Science, 106(3), 262–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Du, T., et al. (2014). Microvesicles derived from human Wharton’s jelly mesenchymal stem cells promote human renal cancer cell growth and aggressiveness through induction of hepatocyte growth factor. PLoS One, 9(5), e96836.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Venkatesh, V., et al. (2018). Targeting notch signalling pathway of cancer stem cells. Stem Cell Investigation, 5, 5.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The varied roles of notch in cancer. Annual Review of Pathology: Mechanisms of Disease, 12, 245–275.

    Article  CAS  Google Scholar 

  104. Gupta, S., Takebe, N., & LoRusso, P. (2010). Targeting the Hedgehog pathway in cancer. Therapeutic Advances in Medical Oncology, 2(4), 237–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ning, X., et al. (2013). Therapeutic strategies targeting cancer stem cells. Cancer Biology & Therapy, 14(4), 295–303.

    Article  CAS  Google Scholar 

  106. King, T., & Posey, A. (2019). Co-expression of an engineered cell-surface sialidase by CART cells improves anti-cancer activity of NK cells in solid tumors. Cytotherapy, 21(5), S27.

    Article  Google Scholar 

  107. Wing, A., et al. (2018). Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunology Research, 6(5), 605–616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hervault, A., & Thanh, N. T. K. (2014). Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 6(20), 11553–11573.

    Article  CAS  PubMed  Google Scholar 

  109. Zhuang, Y., & Miskimins, W. (2008). Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27 Kip1 or p21 Cip1. Journal of Molecular Signaling, 3(1), 18.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hirsch, H. A., et al. (2009). Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Research, 69(19), 7507–7511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Phoenix, K. N., Vumbaca, F., & Claffey, K. P. (2009). Therapeutic metformin/AMPK activation promotes the angiogenic phenotype in the ERα negative MDA-MB-435 breast cancer model. Breast Cancer Research and Treatment, 113(1), 101–111.

    Article  CAS  PubMed  Google Scholar 

  112. Seyfried, T. N., & Huysentruyt, L. C. (2013). On the origin of cancer metastasis. Critical Reviews in Oncogenesis, 18(1–2), 43.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Riccioni, R., et al. (2010). The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor. Blood Cells, Molecules, and Diseases, 45(1), 86–92.

    Article  CAS  PubMed  Google Scholar 

  114. Naujokat, C., & Steinhart, R. (2012). Salinomycin as a drug for targeting human cancer stem cells. BioMed Research International, 2012, 950658. https://doi.org/10.1155/2012/950658

  115. Mai, T. T., et al. (2017). Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nature Chemistry, 9(10), 1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wei, J., Sun, J., & Liu, Y. (2019). Enhanced targeting of prostate cancer-initiating cells by salinomycin-encapsulated lipid-PLGA nanoparticles linked with CD44 antibodies. Oncology Letters, 17(4), 4024–4033.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang, Y., et al. (2014). Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line. Cancer medicine, 3(5), 1126–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Duan, L., et al. (2014). Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells. Biochemical and Biophysical Research Communications, 446(4), 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  119. Schech, A., et al. (2015). Histone deacetylase inhibitor entinostat inhibits tumor-initiating cells in triple-negative breast cancer cells. Molecular Cancer Therapeutics, 14(8), 1848–1857.

    Article  CAS  PubMed  Google Scholar 

  120. Shidal, C., et al. (2016). Lunasin is a novel therapeutic agent for targeting melanoma cancer stem cells. Oncotarget, 7(51), 84128.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Patel, N. S., et al. (2005). Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Research, 65(19), 8690–8697.

    Article  CAS  PubMed  Google Scholar 

  122. Milas, L., & Hittelman, W. N. (2009). Cancer stem cells and tumor response to therapy: current problems and future prospects. Seminars in Radiation Oncology, 19(2), 96–105. https://doi.org/10.1016/j.semradonc.2008.11.004

  123. Ma, H., Li, H.-Q., & Zhang, X. (2013). Cyclopamine, a naturally occurring alkaloid, and its analogues may find wide applications in cancer therapy. Current Topics in Medicinal Chemistry, 13(17), 2208–2215.

    Article  CAS  PubMed  Google Scholar 

  124. Chen, J. K. (2016). I only have eye for ewe: The discovery of cyclopamine and development of Hedgehog pathway-targeting drugs. Natural Product Reports, 33(5), 595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Frampton, J. E., & Basset-Séguin, N. (2018). Vismodegib: A review in advanced basal cell carcinoma. Drugs, 78(11), 1145–1156.

    Article  PubMed  Google Scholar 

  126. Sharpe, H. J., et al. (2015). Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell, 27(3), 327–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, Q.-R., et al. (2019). Novel-smoothened inhibitors for therapeutic targeting of naïve and drug-resistant hedgehog pathway-driven cancers. Acta Pharmacologica Sinica, 40(2), 257–267.

    Article  CAS  PubMed  Google Scholar 

  128. Vincent, K. M., & Postovit, L.-M. (2017). A pan-cancer analysis of secreted Frizzled-related proteins: Re-examining their proposed tumour suppressive function. Scientific Reports, 7, 42719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ushijima, H., et al. (2015). Radio-sensitization effect of an mTOR inhibitor, temsirolimus, on lung adenocarcinoma A549 cells under normoxic and hypoxic conditions. Journal of Radiation Research, 56(4), 663–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sun, J. D., et al. (2015). Combination treatment with hypoxia-activated prodrug evofosfamide (TH-302) and mTOR inhibitors results in enhanced antitumor efficacy in preclinical renal cell carcinoma models. American Journal of Cancer Research, 5(7), 2139.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Souza, D. G., et al. (2004). Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury. British Journal of Pharmacology, 143(1), 132–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Neurological Disorders and Stroke grant 1R01NS096376, 1R01NS112856 the American Cancer Society grant RSG-16-034-01-DDC (to A.U.A.) and P50CA221747 SPORE for Translational Approaches to Brain Cancer.

Author information

Authors and Affiliations

Authors

Contributions

Literature Review: Shivani Baisiwala, Shreya Budhiraja, Miranda Saathoff, Chirag Goel, Khizar Nandoliya.

Writing: Shivani Baisiwala, Shreya Budhiraja, Miranda Saathoff, Chirag Goel, Khizar Nandoliya.

Resources: Atique U Ahmed.

Editing: Shivani Baisiwala, Khizar Nandoliya, Atique U Ahmed.

Corresponding author

Correspondence to Atique U. Ahmed.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baisiwala, S., Budhiraja, S., Goel, C. et al. Spelling Out CICs: A Multi-Organ Examination of the Contributions of Cancer Initiating Cells’ Role in Tumor Progression. Stem Cell Rev and Rep 18, 228–240 (2022). https://doi.org/10.1007/s12015-021-10195-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10195-x

Keywords

Navigation