Skip to main content

Advertisement

Log in

Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Neural tube defects (NTDs) are among the most common congenital defects during neurulation. Spina bifida is a type of NTD that can occur in different forms. Since myelomeningocele (MMC) is the most severe form of spina bifida, finding a satisfactory treatment for MMC is a gold standard for the treatment of spina bifida. The Management of Myelomeningocele Study (MOMS) demonstrated that intrauterine treatment of spina bifida could ameliorate the complications associated with spina bifida and would also reduce the placement of ventriculoperitoneal (VP) shunt by 50%. Recently developed tissue engineering (TE) approaches using scaffolds, stem cells, and growth factors allow treatment of the fetus with minimally invasive methods and promising outcomes. The application of novel patches with appropriate stem cells and growth factors leads to better coverage of the defect with fewer complications. These approaches with less invasive surgical procedures, even in animal models with similar characteristics as the human MMC defect, paves the way for the modern application of less invasive surgical methods. Significantly, the early detection of these problems and applying these approaches can increase the potential efficacy of MMC treatment with fewer complications. However, further studies should be conducted to find the most suitable scaffolds and stem cells, and their application should be evaluated in animal models. This review intends to discuss advanced TE methods for treating MMC and recent successes in increasing the efficacy of the treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

NTD:

Neural tube defect

MMC:

Myelomeningocele

MOMS:

Management of Myelomeningocele Study

VP:

Ventriculoperitoneal

TE:

Tissue engineering

TRASCET:

Trans-amniotic stem cell therapy

CSF:

Cerebrospinal fluid

ADM:

Acellular dermal matrix

bFGF:

Basic fibroblast growth factor

AM:

Amniotic membrane

PMSC:

Placenta-derived mesenchymal stem cell

HUC:

Human umbilical cord

BCF:

Biocellulose film

PLA:

Polylactic acid

PCL:

Polycaprolactone

MSC:

Mesenchymal stem cell

AFMSC:

Amniotic fluid-derived mesenchymal stem cell

MHC:

Major Histocompatibility Complex

BDNF:

Brain-derived neurotropic factor

BMSC:

Bone marrow-derived mesenchymal stem cell

ECM:

Extracellular matrix

SLR:

Sheep Locomotor Rating

NGF:

Nerve growth factor

PDGF:

Platelet-derived growth factor

EGF:

Epithelial growth factor

TGF- α:

Transforming growth factor-α

FGF:

Fibroblast growth factor

iPSC:

Induced pluripotent stem cell

VEGF:

Vascular endothelial growth factor

MRI:

Magnetic resonance imaging

PROM:

Prelabor rupture of membrane

RTG:

Reverse thermal gel

References

  1. Moldenhauer, J. S., & Flake, A. W. (2019). Open fetal surgery for neural tube defects. Best Practice & Research. Clinical Obstetrics & Gynaecology, 58, 121–132. https://doi.org/10.1016/j.bpobgyn.2019.03.004.

    Article  Google Scholar 

  2. Sacco, A., Ushakov, F., Thompson, D., Peebles, D., Pandya, P., De Coppi, P., Wimalasundera, R., Attilakos, G., David, A. L., & Deprest, J. (2019). Fetal surgery for open spina bifida. The Obstetrician & Gynaecologist : the journal for continuing professional development from the Royal College of Obstetricians & Gynaecologists, 21(4), 271–282. https://doi.org/10.1111/tog.12603.

    Article  Google Scholar 

  3. Khoshnood, B., Loane, M., Walle, H. d., Arriola, L., Addor, M.-C., Barisic, I., Beres, J., Bianchi, F., Dias, C., Draper, E., Garne, E., Gatt, M., Haeusler, M., Klungsoyr, K., Latos-Bielenska, A., Lynch, C., McDonnell, B., Nelen, V., Neville, A. J., O’Mahony, M. T., Queisser-Luft, A., Rankin, J., Rissmann, A., Ritvanen, A., Rounding, C., Sipek, A., Tucker, D., Verellen-Dumoulin, C., Wellesley, D., & Dolk, H. (2015). Long term trends in prevalence of neural tube defects in Europe: Population based study. BMJ, 351, h5949. https://doi.org/10.1136/bmj.h5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kabagambe, S., Keller, B., Becker, J., Goodman, L., Pivetti, C., Lankford, L., Chung, K., Lee, C., Chen, Y. J., Kumar, P., Vanover, M., Wang, A., & Farmer, D. (2017). Placental mesenchymal stromal cells seeded on clinical grade extracellular matrix improve ambulation in ovine myelomeningocele. Journal of Pediatric Surgery, 53, 178–182. https://doi.org/10.1016/j.jpedsurg.2017.10.032.

    Article  Google Scholar 

  5. Abe, Y., Ochiai, D., Masuda, H., Sato, Y., Otani, T., Fukutake, M., Ikenoue, S., Miyakoshi, K., Okano, H., & Tanaka, M. (2019). In utero amniotic fluid stem cell therapy protects against Myelomeningocele via spinal cord coverage and hepatocyte growth factor secretion. Stem Cells Translational Medicine, 8(11), 1170–1179. https://doi.org/10.1002/sctm.19-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guilbaud, L., Roux, N., Friszer, S., Garabedian, C., Dhombres, F., Bessières, B., Fallet-Bianco, C., Di Rocco, F., Zerah, M., & Jouannic, J. M. (2017). Fetoscopic patch coverage of experimental myelomenigocele using a two-port access in fetal sheep. Child's Nervous System : ChNS : official journal of the International Society for Pediatric Neurosurgery, 33(7), 1177–1184. https://doi.org/10.1007/s00381-017-3461-7.

    Article  Google Scholar 

  7. Meuli, M., Meuli-Simmen, C., Flake, A. W., Zimmermann, R., Ochsenbein, N., Scheer, I., Mazzone, L., & Moehrlen, U. (2013). Premiere use of Integra™ artificial skin to close an extensive fetal skin defect during open in utero repair of myelomeningocele. Pediatric Surgery International, 29(12), 1321–1326. https://doi.org/10.1007/s00383-013-3412-7.

    Article  PubMed  Google Scholar 

  8. Joyeux, L., De Bie, F., Danzer, E., Van Mieghem, T., Flake, A. W., & Deprest, J. (2018). Safety and efficacy of fetal surgery techniques to close a spina bifida defect in the fetal lamb model: A systematic review. Prenatal Diagnosis, 38(4), 231–242. https://doi.org/10.1002/pd.5222.

    Article  PubMed  Google Scholar 

  9. Adzick, N. S., Thom, E. A., Spong, C. Y., Brock, J. W., Burrows, P. K., Johnson, M. P., Howell, L. J., Farrell, J. A., Dabrowiak, M. E., Sutton, L. N., Gupta, N., Tulipan, N. B., D'Alton, M. E., & Farmer, D. L. (2011). A randomized trial of prenatal versus postnatal repair of Myelomeningocele. New England Journal of Medicine, 364(11), 993–1004. https://doi.org/10.1056/NEJMoa1014379.

    Article  CAS  Google Scholar 

  10. Watanabe, M., Kim, A. G., & Flake, A. W. (2015). Tissue engineering strategies for fetal myelomeningocele repair in animal models. Fetal Diagnosis and Therapy, 37(3), 197–205. https://doi.org/10.1159/000362931.

    Article  PubMed  Google Scholar 

  11. Vu, T., Mann, L. K., Fletcher, S. A., Jain, R., Garnett, J., Tsao, K., Austin, M. T., Moise Jr., K. J., Johnson, A., Shah, M. N., & Papanna, R. (2019). Suture techniques and patch materials using an in-vitro model for watertight closure of in-utero spina bifida repair. Journal of Pediatric Surgery, 55, 726–731. https://doi.org/10.1016/j.jpedsurg.2019.05.024.

    Article  PubMed  Google Scholar 

  12. Papanna, R., Moise Jr., K. J., Mann, L. K., Fletcher, S., Schniederjan, R., Bhattacharjee, M. B., Stewart, R. J., Kaur, S., Prabhu, S. P., & Tseng, S. C. (2016). Cryopreserved human umbilical cord patch for in-utero spina bifida repair. Ultrasound in Obstetrics & Gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology, 47(2), 168–176. https://doi.org/10.1002/uog.15790.

    Article  CAS  Google Scholar 

  13. Dionigi, B., Brazzo 3rd, J. A., Ahmed, A., Feng, C., Wu, Y., Zurakowski, D., & Fauza, D. O. (2015). Trans-amniotic stem cell therapy (TRASCET) minimizes Chiari-II malformation in experimental spina bifida. Journal of Pediatric Surgery, 50(6), 1037–1041. https://doi.org/10.1016/j.jpedsurg.2015.03.034.

    Article  PubMed  Google Scholar 

  14. Hii, L. Y., Sung, C. A., & Shaw, S. W. (2020). Fetal surgery and stem cell therapy for meningomyelocele. Current Opinion in Obstetrics & Gynecology, 32(2), 147–151. https://doi.org/10.1097/gco.0000000000000614.

    Article  Google Scholar 

  15. Watanabe, M., Jo, J., Radu, A., Kaneko, M., Tabata, Y., & Flake, A. W. (2010). A tissue engineering approach for prenatal closure of myelomeningocele with gelatin sponges incorporating basic fibroblast growth factor. Tissue Engineering. Part A, 16(5), 1645–1655. https://doi.org/10.1089/ten.TEA.2009.0532.

    Article  CAS  PubMed  Google Scholar 

  16. Tabata, Y. (2009). Biomaterial technology for tissue engineering applications. Journal of the Royal Society, Interface, 6 Suppl, 3(Suppl 3), S311–S324. https://doi.org/10.1098/rsif.2008.0448.focus.

    Article  CAS  Google Scholar 

  17. Marwan, A. I., Williams, S. M., Bardill, J. R., Gralla, J., Abdul-Aziz, N. M., & Park, D. (2017). Reverse thermal gel for in utero coverage of Spina bifida defects: An innovative bioengineering alternative to open fetal repair. Macromolecular Bioscience, 17(6). https://doi.org/10.1002/mabi.201600473.

  18. Tatu, R., Oria, M., Pulliam, S., Signey, L., Rao, M. B., Peiro, J. L., & Lin, C. Y. (2019). Using poly(l-lactic acid) and poly(ɛ-caprolactone) blends to fabricate self-expanding, watertight and biodegradable surgical patches for potential fetoscopic myelomeningocele repair. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 107(2), 295–305. https://doi.org/10.1002/jbm.b.34121.

    Article  CAS  PubMed  Google Scholar 

  19. Oria, M., Tatu, R. R., Lin, C. Y., & Peiro, J. L. (2019). In vivo evaluation of novel PLA/PCL polymeric patch in rats for potential Spina bifida coverage. The Journal of Surgical Research, 242, 62–69. https://doi.org/10.1016/j.jss.2019.04.035.

    Article  CAS  PubMed  Google Scholar 

  20. Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials, 21(24), 2529–2543. https://doi.org/10.1016/S0142-9612(00)00121-6.

    Article  CAS  PubMed  Google Scholar 

  21. Mann, L. K., Won, J. H., Trenton, N. J., Garnett, J., Snowise, S., Fletcher, S. A., Tseng, S. C. G., Diehl, M. R., & Papanna, R. (2019). Cryopreserved human umbilical cord versus acellular dermal matrix patches for in utero fetal spina bifida repair in a pregnant rat model. Journal of Neurosurgery. Spine, 32(2), 321–331. https://doi.org/10.3171/2019.7.Spine19468.

    Article  PubMed  Google Scholar 

  22. Hosper, N. A., Eggink, A. J., Roelofs, L. A., Wijnen, R. M., van Luyn, M. J., Bank, R. A, Harmsen, M. C., Geutjes, P. J., Daamen, W. F., van Kuppevelt, T. H., Tiemessen, D. M., Oosterwijk, E., Crevels, J. J., Blokx, W. A., Lotgering, F. K., van den Berg, P. P., & Feitz, W. F. (2010). Intra-uterine tissue engineering of full-thickness skin defects in a fetal sheep model. Biomaterials, 31(14), 3910–3919. https://doi.org/10.1016/j.biomaterials.2010.01.129.

    Article  CAS  PubMed  Google Scholar 

  23. Saadai, P., Nout, Y. S., Encinas, J., Wang, A., Downing, T. L., Beattie, M. S., Bresnahan, J. C., Li, S., & Farmer, D. L. (2011). Prenatal repair of myelomeningocele with aligned nanofibrous scaffolds-a pilot study in sheep. Journal of Pediatric Surgery, 46(12), 2279–2283. https://doi.org/10.1016/j.jpedsurg.2011.09.014.

    Article  PubMed  Google Scholar 

  24. Fontecha, C. G., Peiro, J. L., Sevilla, J. J., Aguirre, M., Soldado, F., Fresno, L., Fonseca, C., Chacaltana, A., & Martinez, V. (2011). Fetoscopic coverage of experimental myelomeningocele in sheep using a patch with surgical sealant. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 156(2), 171–176. https://doi.org/10.1016/j.ejogrb.2010.12.046.

    Article  PubMed  Google Scholar 

  25. Watanabe, M., Li, H., Roybal, J., Santore, M., Radu, A., Jo, J., Kaneko, M., Tabata, Y., & Flake, A. (2011). A tissue engineering approach for prenatal closure of myelomeningocele: Comparison of gelatin sponge and microsphere scaffolds and bioactive protein coatings. Tissue Engineering. Part A, 17(7–8), 1099–1110. https://doi.org/10.1089/ten.TEA.2010.0390.

    Article  CAS  PubMed  Google Scholar 

  26. Peiro, J. L., Fontecha, C. G., Ruano, R., Esteves, M., Fonseca, C., Marotta, M., Haeri, S., & Belfort, M. A. (2013). Single-access fetal endoscopy (SAFE) for myelomeningocele in sheep model I: Amniotic carbon dioxide gas approach. Surgical Endoscopy, 27(10), 3835–3840. https://doi.org/10.1007/s00464-013-2984-6.

    Article  PubMed  Google Scholar 

  27. Brown, E. G., Saadai, P., Pivetti, C. D., Beattie, M. S., Bresnahan, J. C., Wang, A., & Farmer, D. L. (2014). In utero repair of myelomeningocele with autologous amniotic membrane in the fetal lamb model. Journal of Pediatric Surgery, 49(1), 133–137discussion 137-138. https://doi.org/10.1016/j.jpedsurg.2013.09.043.

    Article  PubMed  Google Scholar 

  28. Watanabe, M., Li, H., Kim, A. G., Weilerstein, A., Radu, A., Davey, M., Loukogeorgakis, S., Sánchez, M. D., Sumita, K., Morimoto, N., Yamamoto, M., Tabata, Y., & Flake, A. W. (2016). Complete tissue coverage achieved by scaffold-based tissue engineering in the fetal sheep model of Myelomeningocele. Biomaterials, 76, 133–143. https://doi.org/10.1016/j.biomaterials.2015.10.051.

    Article  CAS  PubMed  Google Scholar 

  29. Papanna, R., Mann, L. K., Snowise, S., Morales, Y., Prabhu, S. P., Tseng, S. C., Grill, R., Fletcher, S., & Moise Jr., K. J. (2016). Neurological outcomes after human umbilical cord patch for in utero Spina bifida repair in a sheep model. AJP Reports, 6(3), e309–e317. https://doi.org/10.1055/s-0036-1592316.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Snowise, S., Mann, L., Morales, Y., Moise Jr., K. J., Johnson, A., Fletcher, S., Grill, R. J., Tseng, S. C. G., & Papanna, R. (2017). Cryopreserved human umbilical cord versus biocellulose film for prenatal spina bifida repair in a physiologic rat model. Prenatal Diagnosis, 37(5), 473–481. https://doi.org/10.1002/pd.5035.

    Article  CAS  PubMed  Google Scholar 

  31. Farrelly, J. S., Bianchi, A. H., Ricciardi, A. S., Buzzelli, G. L., Ahle, S. L., Freedman-Weiss, M. R., Luks, V. L., Saltzman, W. M., & Stitelman, D. H. (2019). Alginate microparticles loaded with basic fibroblast growth factor induce tissue coverage in a rat model of myelomeningocele. Journal of Pediatric Surgery, 54(1), 80–85. https://doi.org/10.1016/j.jpedsurg.2018.10.031.

    Article  PubMed  Google Scholar 

  32. Bardill, J., Williams, S. M., Shabeka, U., Niswander, L., Park, D., & Marwan, A. I. (2019). An injectable reverse thermal gel for minimally invasive coverage of mouse Myelomeningocele. The Journal of Surgical Research, 235, 227–236. https://doi.org/10.1016/j.jss.2018.09.078.

    Article  CAS  PubMed  Google Scholar 

  33. Bardill, J. R., Park, D., & Marwan, A. I. (2020). Improved coverage of mouse Myelomeningocele with a mussel inspired reverse thermal gel. The Journal of Surgical Research, 251, 262–274. https://doi.org/10.1016/j.jss.2020.01.022.

    Article  CAS  PubMed  Google Scholar 

  34. Mamede, A. C., Carvalho, M. J., Abrantes, A. M., Laranjo, M., Maia, C. J., & Botelho, M. F. (2012). Amniotic membrane: From structure and functions to clinical applications. Cell and Tissue Research, 349(2), 447–458. https://doi.org/10.1007/s00441-012-1424-6.

    Article  CAS  PubMed  Google Scholar 

  35. Kogan, S., Sood, A., & Granick, M. S. (2018). Amniotic membrane adjuncts and clinical applications in wound healing: A review of the literature. Wounds, 30(6), 168–173.

    PubMed  Google Scholar 

  36. Cooke, M., Tan, E. K., Mandrycky, C., He, H., O'Connell, J., & Tseng, S. C. (2014). Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. Journal of Wound Care, 23(10), 465–474, 476. https://doi.org/10.12968/jowc.2014.23.10.465.

    Article  CAS  PubMed  Google Scholar 

  37. Pedreira, D. A., Quintero, R. A., Acácio, G. L., Caldini, E. T., & Saldiva, P. H. (2011). Neoskin development in the fetus with the use of a three-layer graft: An animal model for in utero closure of large skin defects. The Journal of Maternal-Fetal & Neonatal Medicine, 24(10), 1243–1248. https://doi.org/10.3109/14767058.2011.564486.

    Article  Google Scholar 

  38. Pedreira, D. A., Zanon, N., Nishikuni, K., Moreira de Sá, R. A., Acacio, G. L., Chmait, R. H., Kontopoulos, E. V., & Quintero, R. A. (2016). Endoscopic surgery for the antenatal treatment of myelomeningocele: The CECAM trial. American Journal of Obstetrics and Gynecology, 214(1), 111.e111. https://doi.org/10.1016/j.ajog.2015.09.065.

    Article  Google Scholar 

  39. Mazzone, L., Pontiggia, L., Reichmann, E., Ochsenbein-Kölble, N., Moehrlen, U., & Meuli, M. (2014). Experimental tissue engineering of fetal skin. Pediatric Surgery International, 30(12), 1241–1247. https://doi.org/10.1007/s00383-014-3614-7.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y. J., Chung, K., Pivetti, C., Lankford, L., Kabagambe, S. K., Vanover, M., Becker, J., Lee, C., Tsang, J., Wang, A., & Farmer, D. L. (2017). Fetal surgical repair with placenta-derived mesenchymal stromal cell engineered patch in a rodent model of myelomeningocele. Journal of Pediatric Surgery, 53, 183–188. https://doi.org/10.1016/j.jpedsurg.2017.10.040.

    Article  Google Scholar 

  41. Vanover, M., Pivetti, C., Lankford, L., Kumar, P., Galganski, L., Kabagambe, S., Keller, B., Becker, J., Chen, Y. J., Chung, K., Lee, C., Paxton, Z., Deal, B., Goodman, L., Anderson, J., Jensen, G., Wang, A., & Farmer, D. (2019). High density placental mesenchymal stromal cells provide neuronal preservation and improve motor function following in utero treatment of ovine myelomeningocele. Journal of Pediatric Surgery, 54(1), 75–79. https://doi.org/10.1016/j.jpedsurg.2018.10.032.

    Article  PubMed  Google Scholar 

  42. Lee, D. H., Phi, J. H., Kim, S. K., Cho, B. K., Kim, S. U., & Wang, K. C. (2010). Enhanced reclosure of surgically induced spinal open neural tube defects in chick embryos by injecting human bone marrow stem cells into the amniotic cavity. Neurosurgery, 67(1), 129–135discussion 135. https://doi.org/10.1227/01.Neu.0000371048.76494.0f.

    Article  PubMed  Google Scholar 

  43. Li, H., Gao, F., Ma, L., Jiang, J., Miao, J., Jiang, M., Fan, Y., Wang, L., Wu, D., Liu, B., Wang, W., Lui, V. C., & Yuan, Z. (2012). Therapeutic potential of in utero mesenchymal stem cell (MSCs) transplantation in rat foetuses with spina bifida aperta. Journal of Cellular and Molecular Medicine, 16(7), 1606–1617. https://doi.org/10.1111/j.1582-4934.2011.01470.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Turner, C. G., Pennington, E. C., Gray, F. L., Ahmed, A., Teng, Y. D., & Fauza, D. O. (2013). Intra-amniotic delivery of amniotic-derived neural stem cells in a syngeneic model of Spina bifida. Fetal Diagnosis and Therapy, 34(1), 38–43. https://doi.org/10.1159/000350267.

    Article  PubMed  Google Scholar 

  45. Saadai, P., Wang, A., Nout, Y. S., Downing, T. L., Lofberg, K., Beattie, M. S., Bresnahan, J. C., Li, S., & Farmer, D. L. (2013). Human induced pluripotent stem cell-derived neural crest stem cells integrate into the injured spinal cord in the fetal lamb model of myelomeningocele. Journal of Pediatric Surgery, 48(1), 158–163. https://doi.org/10.1016/j.jpedsurg.2012.10.034.

    Article  PubMed  Google Scholar 

  46. Ma, W., Wei, X., Gu, H., Li, H., Guan, K., Liu, D., Chen, L., Cao, S., An, D., Zhang, H., Huang, T., Miao, J., Zhao, G., Wu, D., Liu, B., Wang, W., & Yuan, Z. (2015). Sensory neuron differentiation potential of in utero mesenchymal stem cell transplantation in rat fetuses with spina bifida aperta. Birth defects research Part A, Clinical and molecular teratology, 103(9), 772–779. https://doi.org/10.1002/bdra.23401.

    Article  CAS  PubMed  Google Scholar 

  47. Wang, A., Brown, E. G., Lankford, L., Keller, B. A., Pivetti, C. D., Sitkin, N. A., Beattie, M. S., Bresnahan, J. C., & Farmer, D. L. (2015). Placental mesenchymal stromal cells rescue ambulation in ovine myelomeningocele. Stem Cells Translational Medicine, 4(6), 659–669. https://doi.org/10.5966/sctm.2014-0296.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, X., Yuan, Z., Wei, X., Li, H., Zhao, G., Miao, J., Wu, D., Liu, B., Cao, S., An, D., Ma, W., Zhang, H., Wang, W., Wang, Q., & Gu, H. (2016). Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. Journal of Materials Science. Materials in Medicine, 27(4), 77. https://doi.org/10.1007/s10856-016-5684-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Feng, C., Graham, C. D., Connors, J. P., Brazzo 3rd, J., Zurakowski, D., & Fauza, D. O. (2016). A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. Journal of Pediatric Surgery, 51(6), 1010–1013. https://doi.org/10.1016/j.jpedsurg.2016.02.071.

    Article  PubMed  Google Scholar 

  50. Brown, E. G., Keller, B. A., Lankford, L., Pivetti, C. D., Hirose, S., Farmer, D. L., & Wang, A. (2016). Age does matter: A pilot comparison of placenta-derived stromal cells for in utero repair of Myelomeningocele using a lamb model. Fetal Diagnosis and Therapy, 39(3), 179–185. https://doi.org/10.1159/000433427.

    Article  PubMed  Google Scholar 

  51. Kajiwara, K., Tanemoto, T., Wada, S., Karibe, J., Ihara, N., Ikemoto, Y., Kawasaki, T., Oishi, Y., Samura, O., Okamura, K., Takada, S., Akutsu, H., Sago, H., Okamoto, A., & Umezawa, A. (2017). Fetal therapy model of Myelomeningocele with three-dimensional skin using amniotic fluid cell-derived induced pluripotent stem cells. Stem Cell Reports, 8(6), 1701–1713. https://doi.org/10.1016/j.stemcr.2017.05.013.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shieh, H. F., Tracy, S. A., Hong, C. R., Chalphin, A. V., Ahmed, A., Rohrer, L., Zurakowski, D., & Fauza, D. O. (2019). Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. Journal of Pediatric Surgery, 54(2), 293–296. https://doi.org/10.1016/j.jpedsurg.2018.10.086.

    Article  PubMed  Google Scholar 

  53. Vanover, M., Pivetti, C., Galganski, L., Kumar, P., Lankford, L., Rowland, D., Paxton, Z., Deal, B., Wang, A., & Farmer, D. (2019). Spinal angulation: A limitation of the fetal lamb model of Myelomeningocele. Fetal Diagnosis and Therapy, 46(6), 376–384. https://doi.org/10.1159/000496201.

    Article  PubMed  Google Scholar 

  54. Galganski, L. A., Kumar, P., Vanover, M. A., Pivetti, C. D., Anderson, J. E., Lankford, L., Paxton, Z. J., Chung, K., Lee, C., Hegazi, M. S., Yamashiro, K. J., Wang, A., & Farmer, D. L. (2019). In utero treatment of Myelomeningocele with placental Mesenchymal stromal cells - selection of an optimal cell line in preparation for clinical trials. Journal of Pediatric Surgery. https://doi.org/10.1016/j.jpedsurg.2019.09.029.

  55. Mazzone, L., Moehrlen, U., Ochsenbein-Kölble, N., Pontiggia, L., Biedermann, T., Reichmann, E., & Meuli, M. (2020). Bioengineering and in utero transplantation of fetal skin in the sheep model: A crucial step towards clinical application in human fetal spina bifida repair. Journal of Tissue Engineering and Regenerative Medicine, 14(1), 58–65. https://doi.org/10.1002/term.2963.

    Article  CAS  PubMed  Google Scholar 

  56. Dionigi, B., Ahmed, A., Brazzo 3rd, J., Connors, J. P., Zurakowski, D., & Fauza, D. O. (2015). Partial or complete coverage of experimental spina bifida by simple intra-amniotic injection of concentrated amniotic mesenchymal stem cells. Journal of Pediatric Surgery, 50(1), 69–73. https://doi.org/10.1016/j.jpedsurg.2014.10.004.

    Article  PubMed  Google Scholar 

  57. Brown, C., McKee, C., Bakshi, S., Walker, K., Hakman, E., Halassy, S., Svinarich, D., Dodds, R., Govind, C. K., & Chaudhry, G. R. (2019). Mesenchymal stem cells: Cell therapy and regeneration potential. Journal of Tissue Engineering and Regenerative Medicine, 13(9), 1738–1755. https://doi.org/10.1002/term.2914.

    Article  CAS  PubMed  Google Scholar 

  58. Joerger-Messerli, M. S., Marx, C., Oppliger, B., Mueller, M., Surbek, D. V., & Schoeberlein, A. (2016). Mesenchymal stem cells from Wharton's jelly and amniotic fluid. Best Practice & Research. Clinical Obstetrics & Gynaecology, 31, 30–44. https://doi.org/10.1016/j.bpobgyn.2015.07.006.

    Article  Google Scholar 

  59. Moschidou, D., Mukherjee, S., Blundell, M. P., Jones, G. N., Atala, A. J., Thrasher, A. J., Fisk, N. M., De Coppi, P., & Guillot, P. V. (2013). Human mid-trimester amniotic fluid stem cells cultured under embryonic stem cell conditions with valproic acid acquire pluripotent characteristics. Stem Cells and Development, 22(3), 444–458. https://doi.org/10.1089/scd.2012.0267.

    Article  CAS  PubMed  Google Scholar 

  60. Ceccarelli, G., Pozzo, E., Scorletti, F., Benedetti, L., Cusella, G., Ronzoni, F. L., Sahakyan, V., Zambaiti, E., Mimmi, M. C., Calcaterra, V., Deprest, J., Sampaolesi, M., & Pelizzo, G. (2015). Molecular signature of amniotic fluid derived stem cells in the fetal sheep model of myelomeningocele. Journal of Pediatric Surgery, 50(9), 1521–1527. https://doi.org/10.1016/j.jpedsurg.2015.04.014.

    Article  PubMed  Google Scholar 

  61. Hosper, N. A., Bank, R. A, & van den Berg, P. P. (2014). Human amniotic fluid-derived mesenchymal cells from fetuses with a neural tube defect do not deposit collagen type i protein after TGF-β1 stimulation in vitro. Stem Cells and Development, 23(5), 555–562. https://doi.org/10.1089/scd.2013.0334.

    Article  CAS  PubMed  Google Scholar 

  62. Basler, M., Pontiggia, L., Biedermann, T., Reichmann, E., Meuli, M., & Mazzone, L. (2020). Bioengineering of fetal skin: Differentiation of amniotic fluid stem cells into keratinocytes. Fetal Diagnosis and Therapy, 47(3), 198–204. https://doi.org/10.1159/000502181.

    Article  PubMed  Google Scholar 

  63. Lee, J. M., Jung, J., Lee, H.-J., Jeong, S. J., Cho, K. J., Hwang, S.-G., & Kim, G. J. (2012). Comparison of immunomodulatory effects of placenta mesenchymal stem cells with bone marrow and adipose mesenchymal stem cells. International Immunopharmacology, 13(2), 219–224. https://doi.org/10.1016/j.intimp.2012.03.024.

    Article  CAS  PubMed  Google Scholar 

  64. Somuncu, Ö. S., Coşkun, Y., Ballica, B., Temiz, A. F., & Somuncu, D. (2019). In vitro artificial skin engineering by decellularized placental scaffold for secondary skin problems of meningomyelocele. Journal of Clinical Neuroscience : official journal of the Neurosurgical Society of Australasia, 59, 291–297. https://doi.org/10.1016/j.jocn.2018.10.044.

    Article  CAS  Google Scholar 

  65. Cao, S., Wei, X., Li, H., Miao, J., Zhao, G., Wu, D., Liu, B., Zhang, Y., Gu, H., Wang, L., Fan, Y., An, D., & Yuan, Z. (2016). Comparative study on the differentiation of Mesenchymal stem cells between fetal and postnatal rat spinal cord niche. Cell Transplantation, 25(6), 1115–1130. https://doi.org/10.3727/096368915x689910.

    Article  PubMed  Google Scholar 

  66. O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X.

    Article  CAS  Google Scholar 

  67. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23(9), 1045–1059. https://doi.org/10.3727/096368913x667709.

    Article  PubMed  Google Scholar 

  68. Meuli, M., Meuli-Simmen, C., Yingling, C. D., Hutchins, G. M., Hoffman, K. M., Harrison, M. R., & Adzick, N. S. (1995). Creation of myelomeningocele in utero: A model of functional damage from spinal cord exposure in fetal sheep. Journal of Pediatric Surgery, 30(7), 1028–1032discussion 1032-1023. https://doi.org/10.1016/0022-3468(95)90335-6.

    Article  CAS  PubMed  Google Scholar 

  69. Guilbaud, L., Garabedian, C., Di Rocco, F., Fallet-Bianco, C., Friszer, S., Zerah, M., & Jouannic, J. M. (2014). Limits of the surgically induced model of myelomeningocele in the fetal sheep. Child's Nervous System : ChNS : official journal of the International Society for Pediatric Neurosurgery, 30(8), 1425–1429. https://doi.org/10.1007/s00381-014-2426-3.

    Article  CAS  Google Scholar 

  70. Lopez de Torre, B., Tovar, J. A., Aldazabal, P., Uriarte, S., Rey, A., Ruiz, I., & San Vicente, M. (1990). Spina bifida: A chick embryo experimental model. Zeitschrift für Kinderchirurgie, 45(Suppl 1), 20–22. https://doi.org/10.1055/s-2008-1042628.

    Article  PubMed  Google Scholar 

  71. Housley, H. T., Graf, J. L., Lipshultz, G. S., Calvano, C. J., Harrison, M. R., Farmer, D. L., & Jennings, R. W. (2000). Creation of myelomeningocele in the fetal rabbit. Fetal Diagnosis and Therapy, 15(5), 275–279. https://doi.org/10.1159/000021021.

    Article  CAS  PubMed  Google Scholar 

  72. Danzer, E., Schwarz, U., Wehrli, S., Radu, A., Adzick, N. S., & Flake, A. W. (2005). Retinoic acid induced myelomeningocele in fetal rats: Characterization by histopathological analysis and magnetic resonance imaging. Experimental Neurology, 194(2), 467–475. https://doi.org/10.1016/j.expneurol.2005.03.011.

    Article  CAS  PubMed  Google Scholar 

  73. Yamashiro, K. J., Galganski, L. A., & Hirose, S. (2019). Fetal myelomeningocele repair. Seminars in Pediatric Surgery, 28(4), 150823. https://doi.org/10.1053/j.sempedsurg.2019.07.006.

    Article  PubMed  Google Scholar 

  74. Li, H., Miao, J., Zhao, G., Wu, D., Liu, B., Wei, X., Cao, S., Gu, H., Zhang, Y., Wang, L., Fan, Y., & Yuan, Z. (2014). Different expression patterns of growth factors in rat fetuses with spina bifida aperta after in utero mesenchymal stromal cell transplantation. Cytotherapy, 16(3), 319–330. https://doi.org/10.1016/j.jcyt.2013.10.005.

    Article  CAS  PubMed  Google Scholar 

  75. Sirico, A., Raffone, A., Lanzone, A., Saccone, G., Travaglino, A., Sarno, L., Rizzo, G., Zullo, F., & Maruotti, G. M. (2020). First trimester detection of fetal open spina bifida using BS/BSOB ratio. Archives of Gynecology and Obstetrics, 301(2), 333–340. https://doi.org/10.1007/s00404-019-05422-3.

    Article  CAS  PubMed  Google Scholar 

  76. Munoz, J. L., Bishop, E., Reider, M., Radeva, M., & Singh, K. (2019). Antenatal ultrasound compared to MRI evaluation of fetal myelomeningocele: A prenatal and postnatal evaluation. Journal of Perinatal Medicine, 47(7), 771–774. https://doi.org/10.1515/jpm-2019-0177.

    Article  PubMed  Google Scholar 

  77. Lapa, D. A. (2019). Endoscopic fetal surgery for neural tube defects. Best Practice & Research. Clinical Obstetrics & Gynaecology, 58, 133–141. https://doi.org/10.1016/j.bpobgyn.2019.05.001.

    Article  Google Scholar 

  78. Adzick, N. S. (2012). Fetal surgery for myelomeningocele: Trials and tribulations. Isabella Forshall lecture. Journal of Pediatric Surgery, 47(2), 273–281. https://doi.org/10.1016/j.jpedsurg.2011.11.021.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Meuli, M., & Moehrlen, U. (2014). Fetal surgery for myelomeningocele is effective: A critical look at the whys. Pediatric Surgery International, 30(7), 689–697. https://doi.org/10.1007/s00383-014-3524-8.

    Article  PubMed  Google Scholar 

  80. Kabagambe, S. K., Jensen, G. W., Chen, Y. J., Vanover, M. A., & Farmer, D. L. (2018). Fetal surgery for Myelomeningocele: A systematic review and meta-analysis of outcomes in Fetoscopic versus open repair. Fetal Diagnosis and Therapy, 43(3), 161–174. https://doi.org/10.1159/000479505.

    Article  PubMed  Google Scholar 

  81. Freedman-Weiss, M. R., & Stitelman, D. H. (2020). Minimally invasive fetal therapy for Myelomeningocele. Current Stem Cell Reports, 6(1), 1–5. https://doi.org/10.1007/s40778-020-00167-1.

    Article  Google Scholar 

  82. Heuer, G. G., Moldenhauer, J. S., & Scott Adzick, N. (2017). Prenatal surgery for myelomeningocele: Review of the literature and future directions. Child's Nervous System : ChNS : official journal of the International Society for Pediatric Neurosurgery, 33(7), 1149–1155. https://doi.org/10.1007/s00381-017-3440-z.

    Article  Google Scholar 

  83. Peranteau, W. H., & Adzick, N. S. (2016). Prenatal surgery for myelomeningocele. Current Opinion in Obstetrics & Gynecology, 28(2), 111–118. https://doi.org/10.1097/gco.0000000000000253.

    Article  Google Scholar 

  84. Kahr, M. K., Winder, F. M., Vonzun, L., Mazzone, L., Moehrlen, U., Meuli, M., Hüsler, M., Krähenmann, F., Zimmermann, R., & Ochsenbein-Kölble, N. (2019). Open intrauterine fetal Myelomeningocele repair: Changes in the surgical procedure and perinatal complications during the first 8 years of experience at a single center. Fetal Diagnosis and Therapy, 1-6, 485–490. https://doi.org/10.1159/000503388.

    Article  Google Scholar 

  85. Bruner, J. P., Richards, W. O., Tulipan, N. B., & Arney, T. L. (1999). Endoscopic coverage of fetal myelomeningocele in utero. American Journal of Obstetrics and Gynecology, 180(1 Pt 1), 153–158. https://doi.org/10.1016/s0002-9378(99)70167-5.

    Article  CAS  PubMed  Google Scholar 

  86. Farmer, D. L., von Koch, C. S., Peacock, W. J., Danielpour, M., Gupta, N., Lee, H., & Harrison, M. R. (2003). In utero repair of myelomeningocele: Experimental pathophysiology, initial clinical experience, and outcomes. Archives of Surgery, 138(8), 872–878. https://doi.org/10.1001/archsurg.138.8.872.

    Article  PubMed  Google Scholar 

  87. Kohl, T., Tchatcheva, K., Merz, W., Wartenberg, H. C., Heep, A., Müller, A., Franz, A., Stressig, R., Willinek, W., & Gembruch, U. (2009). Percutaneous fetoscopic patch closure of human spina bifida aperta: Advances in fetal surgical techniques may obviate the need for early postnatal neurosurgical intervention. Surgical Endoscopy, 23(4), 890–895. https://doi.org/10.1007/s00464-008-0153-0.

    Article  PubMed  Google Scholar 

  88. Carrabba, G., Macchini, F., Fabietti, I., Schisano, L., Meccariello, G., Campanella, R., Bertani, G., Locatelli, M., Boito, S., Porro, G. A., Gabetta, L., Picciolini, O., Cinnante, C., Triulzi, F., Ciralli, F., Mosca, F., Lapa, D. A., Leva, E., Rampini, P., & Persico, N. (2019). Minimally invasive fetal surgery for myelomeningocele: Preliminary report from a single center. Neurosurgical Focus, 47(4), E12. https://doi.org/10.3171/2019.8.Focus19438.

    Article  PubMed  Google Scholar 

  89. Lapa Pedreira, D. A., Acacio, G. L., Gonçalves, R. T., Sá, R. A. M., Brandt, R. A., Chmait, R. H., Kontopoulos, E. V., & Quintero, R. A. (2018). Percutaneous fetoscopic closure of large open spina bifida using a bilaminar skin substitute. Ultrasound in Obstetrics & Gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology, 52(4), 458–466. https://doi.org/10.1002/uog.19001.

    Article  CAS  Google Scholar 

  90. Lazow, S. P., & Fauza, D. O. (2020). Transamniotic stem cell therapy. Advances in Experimental Medicine and Biology, 1237, 61–74. https://doi.org/10.1007/5584_2019_416.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Graphical abstract and both figures are created with BioRender.com

Author information

Authors and Affiliations

Authors

Contributions

ASK wrote the manuscript.

MMZ revised the manuscript.

A-MK and MS revised the final manuscript.

Corresponding authors

Correspondence to Abdol-Mohammad Kajbafzadeh or Masoumeh Majidi Zolbin.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Competing Interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

This article belongs to the Topical Collection: Special issue on Neurogenesis and Neurodegeneration: Basic Research and Clinic Applications

Guest Editor: Henning Ulrich

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 89 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani Khaboushan, A., Shakibaei, M., Kajbafzadeh, AM. et al. Prenatal Neural Tube Anomalies: A Decade of Intrauterine Stem Cell Transplantation Using Advanced Tissue Engineering Methods. Stem Cell Rev and Rep 18, 752–767 (2022). https://doi.org/10.1007/s12015-021-10150-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-021-10150-w

Keywords

Navigation