Skip to main content
Log in

JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process in the human airway epithelium is largely unknown. The objective of this study was to define the role of the Notch ligand JAG1 in regulating human BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. These data demonstrate JAG1-mediated Notch signaling regulates differentiation of BC into secretory cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4

References

  1. Crystal, R. G., Randell, S. H., Engelhardt, J. F., Voynow, J., & Sunday, M. E. (2008). Airway epithelial cells: current concepts and challenges. Proceedings of the American Thoracic Society, 5(7), 772–777.

    Article  PubMed  Google Scholar 

  2. Knight, D. A., & Holgate, S. T. (2003). The airway epithelium: structural and functional properties in health and disease. Respirology, 8(4), 432–446.

    Article  PubMed  Google Scholar 

  3. Tam, A., Wadsworth, S., Dorscheid, D., Man, S. F., & Sin, D. D. (2011). The airway epithelium: more than just a structural barrier. Therapeutic Advances in Respiratory Disease, 5(4), 255–273.

    Article  PubMed  Google Scholar 

  4. Evans, M. J., Van Winkle, L. S., Fanucchi, M. V., & Plopper, C. G. (2001). Cellular and molecular characteristics of basal cells in airway epithelium. Experimental Lung Research, 27(5), 401–415.

    Article  CAS  PubMed  Google Scholar 

  5. Hackett, N. R., Shaykhiev, R., Walters, M. S., et al. (2011). The human airway epithelial basal cell transcriptome. PLoS One, 6(5), e18378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hackett, T. L., Shaheen, F., Johnson, A., et al. (2008). Characterization of side population cells from human airway epithelium. Stem Cells, 26(10), 2576–2585.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hajj, R., Baranek, T., Le, N. R., Lesimple, P., Puchelle, E., & Coraux, C. (2007). Basal cells of the human adult airway surface epithelium retain transit-amplifying cell properties. Stem Cells, 25(1), 139–148.

    Article  CAS  PubMed  Google Scholar 

  8. Hogan, B. L., Barkauskas, C. E., Chapman, H. A., et al. (2014). Repair and regeneration of the respiratory system: complexity, plasticity, and mechanisms of lung stem cell function. Cell Stem Cell, 15(2), 123–138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rock, J. R., Onaitis, M. W., Rawlins, E. L., et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12771–12775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rock, J. R., Randell, S. H., & Hogan, B. L. (2010). Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Disease Models & Mechanisms, 3(9–10), 545–556.

    Article  CAS  Google Scholar 

  11. Staudt, M. R., Buro-Auriemma, L. J., Walters, M. S., et al. (2014). Airway Basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 190(8), 955–958.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blanpain, C., Horsley, V., & Fuchs, E. (2007). Epithelial stem cells: turning over new leaves. Cell, 128(3), 445–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hori, K., Sen, A., & Rtavanis-Tsakonas, S. (2013). Notch signaling at a glance. Journal of Cell Science, 126(Pt 10), 2135–2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kopan, R., & Ilagan, M. X. (2009). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell, 137(2), 216–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, J., Sato, C., Cerletti, M., & Wagers, A. (2010). Notch signaling in the regulation of stem cell self-renewal and differentiation. Current Topics in Developmental Biology, 92, 367–409.

    Article  CAS  PubMed  Google Scholar 

  16. Andersson, E. R., Sandberg, R., & Lendahl, U. (2011). Notch signaling: simplicity in design, versatility in function. Development, 138(17), 3593–3612.

    Article  CAS  PubMed  Google Scholar 

  17. Borggrefe, T., & Liefke, R. (2012). Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle, 11(2), 264–276.

    Article  CAS  PubMed  Google Scholar 

  18. Iso, T., Kedes, L., & Hamamori, Y. (2003). HES and HERP families: multiple effectors of the Notch signaling pathway. Journal of Cellular Physiology, 194(3), 237–255.

    Article  CAS  PubMed  Google Scholar 

  19. Boucherat, O., Chakir, J., & Jeannotte, L. (2012). The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways. Biology Open, 1(7), 677–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guha, A., Vasconcelos, M., Cai, Y., et al. (2012). Neuroepithelial body microenvironment is a niche for a distinct subset of Clara-like precursors in the developing airways. Proceedings of the National Academy of Sciences of the United States of America, 109(31), 12592–12597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guseh, J. S., Bores, S. A., Stanger, B. Z., et al. (2009). Notch signaling promotes airway mucous metaplasia and inhibits alveolar development. Development, 136(10), 1751–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito, T., Udaka, N., Yazawa, T., et al. (2000). Basic helix-loop-helix transcription factors regulate the neuroendocrine differentiation of fetal mouse pulmonary epithelium. Development, 127(18), 3913–3921.

    CAS  PubMed  Google Scholar 

  23. Li, A., Chan, B., Felix, J. C., et al. (2013). Tissue-dependent consequences of Apc inactivation on proliferation and differentiation of ciliated cell progenitors via Wnt and notch signaling. PLoS One, 8(4), e62215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori, M., Mahoney, J. E., Stupnikov, M. R., et al. (2015). Notch3-Jagged signaling controls the pool of undifferentiated airway progenitors. Development, 142(2), 258–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morimoto, M., Liu, Z., Cheng, H. T., Winters, N., Bader, D., & Kopan, R. (2010). Canonical Notch signaling in the developing lung is required for determination of arterial smooth muscle cells and selection of Clara versus ciliated cell fate. Journal of Cell Science, 123(Pt 2), 213–224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morimoto, M., Nishinakamura, R., Saga, Y., & Kopan, R. (2012). Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development, 139(23), 4365–4373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pardo-Saganta, A., Tata, P. R., Law, B. M., et al. (2015). Parent stem cells can serve as niches for their daughter cells. Nature, 523(7562), 597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pardo-Saganta, A., Law, B. M., Tata, P. R., et al. (2015). Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell, 16(2), 184–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paul, M. K., Bisht, B., Darmawan, D. O., et al. (2014). Dynamic changes in intracellular ROS levels regulate airway basal stem cell homeostasis through Nrf2-dependent Notch signaling. Cell Stem Cell, 15(2), 199–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rock, J. R., Gao, X., Xue, Y., Randell, S. H., Kong, Y. Y., & Hogan, B. L. (2011). Notch-dependent differentiation of adult airway basal stem cells. Cell Stem Cell, 8(6), 639–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shan, L., Aster, J. C., Sklar, J., & Sunday, M. E. (2007). Notch-1 regulates pulmonary neuroendocrine cell differentiation in cell lines and in transgenic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 292(2), L500–L509.

    Article  CAS  PubMed  Google Scholar 

  32. Tata, P. R., Pardo-Saganta, A., Prabhu, M., et al. (2013). Airway-specific inducible transgene expression using aerosolized doxycycline. American Journal of Respiratory Cell and Molecular Biology, 49(6), 1048–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsao, P. N., Vasconcelos, M., Izvolsky, K. I., Qian, J., Lu, J., & Cardoso, W. V. (2009). Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development, 136(13), 2297–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsao, P. N., Wei, S. C., Wu, M. F., et al. (2011). Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development, 138(16), 3533–3543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xing, Y., Li, A., Borok, Z., Li, C., & Minoo, P. (2012). NOTCH1 is required for regeneration of Clara cells during repair of airway injury. Stem Cells, 30(5), 946–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, K., Moghal, N., & Egan, S. E. (2012). Notch signaling in lung development and disease. Advances in Experimental Medicine and Biology, 727, 89–98.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, S., Loch, A. J., Radtke, F., Egan, S. E., & Xu, K. (2013). Jagged1 is the major regulator of Notch-dependent cell fate in proximal airways. Developmental Dynamics, 242(6), 678–686.

    Article  CAS  PubMed  Google Scholar 

  38. Danahay, H., Pessotti, A. D., Coote, J., et al. (2015). Notch2 is required for inflammatory cytokine-driven goblet cell metaplasia in the lung. Cell Reports, 10(2), 239–252.

    Article  CAS  PubMed  Google Scholar 

  39. Gomi, K., Arbelaez, V., Crystal, R. G., & Walters, M. S. (2015). Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway. PLoS One, 10(2), e0116507.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walters, M. S., Gomi, K., Ashbridge, B., et al. (2013). Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity. Respiratory Research, 14, 135.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dobin, A., Davis, C. A., Schlesinger, F., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29(1), 15–21.

    Article  CAS  PubMed  Google Scholar 

  42. Tilley, A. E., Harvey, B. G., Heguy, A., et al. (2009). Down-regulation of the notch pathway in human airway epithelium in association with smoking and chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 179(6), 457–466.

    Article  CAS  PubMed  Google Scholar 

  43. Marcet, B., Chevalier, B., Luxardi, G., et al. (2011). Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nature Cell Biology, 13(6), 693–699.

    Article  CAS  PubMed  Google Scholar 

  44. Lafkas, D., Shelton, A., Chiu, C., et al. (2015). Therapeutic antibodies reveal Notch control of transdifferentiation in the adult lung. Nature, 528(7580), 127–131.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Mohamed for help in preparing this manuscript. These studies were supported, in part, by R01HL107882; R01HL107882-S; P20 HL113443, and R01HL1189541. KG was supported, in part by a NYSTEM Fellowship. Research reported in this publication was supported by NIH and the Family Smoking Prevention and Tobacco Control Act. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH or the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Walters.

Ethics declarations

Conflict of Interest

The authors declare no potential conflict of interest.

Role of Sponsor / Funder

The funders of this study had no role in the design and conduct of the study; not in the collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomi, K., Staudt, M.R., Salit, J. et al. JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium. Stem Cell Rev and Rep 12, 454–463 (2016). https://doi.org/10.1007/s12015-016-9656-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9656-6

Keywords

Navigation