Skip to main content

Advertisement

Log in

Systems-Based Technologies in Profiling the Stem Cell Molecular Framework for Cardioregenerative Medicine

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Over the last decade, advancements in stem cell biology have yielded a variety of sources for stem cell-based cardiovascular investigation. Stem cell behavior, whether to maintain its stable state of pluripotency or to prime toward the cardiovascular lineage is governed by a set of coordinated interactions between epigenetic, transcriptional, and translational mechanisms. The science of incorporating genes (genomics), RNA (transcriptomics), proteins (proteomics), and metabolites (metabolomics) data in a specific biological sample is known as systems biology. Integrating systems biology in progression with stem cell biologics can contribute to our knowledge of mechanisms that underlie pluripotency maintenance and guarantee fidelity of cardiac lineage specification. This review provides a brief summarization of OMICS-based strategies including transcriptomics, proteomics, and metabolomics used to understand stem cell fate and to outline molecular processes involved in heart development. Additionally, current efforts in cardioregeneration based on the “one-size-fits-all” principle limit the potential of individualized therapy in regenerative medicine. Here, we summarize recent studies that introduced systems biology into cardiovascular clinical outcomes analysis, allowing for predictive assessment for disease recurrence and patient-specific therapeutic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Westerhoff, H. V., & Palsson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249–1252.

    Article  CAS  PubMed  Google Scholar 

  2. Joyce, A. R., & Palsson, B. O. (2006). The model organism as a system: integrating ‘omics’ data sets. Nature Reviews Molecular Cell Biology, 7(3), 198–210.

    Article  CAS  PubMed  Google Scholar 

  3. Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., Gifford, D. K., Melton, D. A., Jaenisch, R., & Young, R. A. (2005). Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122(6), 947–956.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132(6), 1049–1061.

    Article  CAS  PubMed  Google Scholar 

  5. Wang, J., Rao, S., Chu, J., Shen, X., Levasseur, D. N., Theunissen, T. W., & Orkin, S. H. (2006). A protein interaction network for pluripotency of embryonic stem cells. Nature, 444(7117), 364–368.

    Article  CAS  PubMed  Google Scholar 

  6. Lu, R., Markowetz, F., Unwin, R. D., Leek, J. T., Airoldi, E. M., MacArthur, B. D., Lachmann, A., Rozov, R., Ma'ayan, A., Boyer, L. A., Troyanskaya, O. G., Whetton, A. D., & Lemischka, I. R. (2009). Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature, 462(7271), 358–362.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Horak, C. E., & Snyder, M. (2002). ChIP-chip: a genomic approach for identifying transcription factor binding sites. Methods in Enzymology, 350, 469–483.

    CAS  PubMed  Google Scholar 

  8. de Boer, E., Rodriguez, P., Bonte, E., Krijgsveld, J., Katsantoni, E., Heck, A., Grosveld, F., & Strouboulis, J. (2003). Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7480–7485.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Chung, H., & Sidhu, K. S. (2008). Epigenetic modifications of embryonic stem cells: current trends and relevance in developing regenerative medicine. Stem Cells Cloning, 1, 11–21.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Fisher, C. L., & Fisher, A. G. (2011). Chromatin states in pluripotent, differentiated, and reprogrammed cells. Current Opinion in Genetics and Development, 21(2), 140–146.

    Article  CAS  PubMed  Google Scholar 

  11. Smith, C., & Storms, B. (2000). Hematopoietic stem cells. Clinical Orthopaedics and Related Research, 379, S91–97.

    Article  PubMed  Google Scholar 

  12. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., & Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.

    Article  CAS  PubMed  Google Scholar 

  13. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A., & Field, L. J. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668.

    Article  CAS  PubMed  Google Scholar 

  14. Charbord, P., Pouget, C., Binder, H., Dumont, F., Stik, G., Levy, P., Allain, F., Marchal, C., Richter, J., Uzan, B., Pflumio, F., Letourneur, F., Wirth, H., Dzierzak, E., Traver, D., Jaffredo, T., & Durand, C. (2014). A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem: Cell.

    Google Scholar 

  15. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., Ansorge, W., & Ho, A. D. (2005). Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Experimental Hematology, 33(11), 1402–1416.

    Article  CAS  PubMed  Google Scholar 

  16. Augello, A., & De Bari, C. (2010). The regulation of differentiation in mesenchymal stem cells. Human Gene Therapy, 21(10), 1226–1238.

    Article  CAS  PubMed  Google Scholar 

  17. Behfar, A., & Terzic, A. (2006). Derivation of a cardiopoietic population from human mesenchymal stem cells yields cardiac progeny. Nature Clinical Practice. Cardiovascular Medicine, 3(Suppl 1), S78–82.

    Article  CAS  PubMed  Google Scholar 

  18. Liechty, K. W., MacKenzie, T. C., Shaaban, A. F., Radu, A., Moseley, A. M., Deans, R., Marshak, D. R., & Flake, A. W. (2000). Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nature Medicine, 6(11), 1282–1286.

    Article  CAS  PubMed  Google Scholar 

  19. Madonna, R., & De Caterina, R. (2010). Adipose tissue: a new source for cardiovascular repair. Journal of Cardiovascular Medicine (Hagerstown), 11(2), 71–80.

    Article  Google Scholar 

  20. Meliga, E., Strem, B. M., Duckers, H. J., & Serruys, P. W. (2007). Adipose-derived cells. Cell Transplantation, 16(9), 963–970.

    Article  PubMed  Google Scholar 

  21. Planat-Benard, V., Silvestre, J. S., Cousin, B., Andre, M., Nibbelink, M., Tamarat, R., Clergue, M., Manneville, C., Saillan-Barreau, C., Duriez, M., Tedgui, A., Levy, B., Penicaud, L., & Casteilla, L. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation, 109(5), 656–663.

    Article  PubMed  Google Scholar 

  22. Carvalho, P. H., Daibert, A. P., Monteiro, B. S., Okano, B. S., Carvalho, J. L., Cunha, D. N., Favarato, L. S., Pereira, V. G., Augusto, L. E., & Del Carlo, R. J. (2013). Differentiation of adipose tissue-derived mesenchymal stem cells into cardiomyocytes. Arquivos Brasileiros de Cardiologia, 100(1), 82–89.

    Article  CAS  PubMed  Google Scholar 

  23. Peng, L., Jia, Z., Yin, X., Zhang, X., Liu, Y., Chen, P., Ma, K., & Zhou, C. (2008). Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells and Development, 17(4), 761–773.

    Article  CAS  PubMed  Google Scholar 

  24. Menicanin, D., Bartold, P. M., Zannettino, A. C., & Gronthos, S. (2009). Genomic profiling of mesenchymal stem cells. Stem Cell Reviews and Reports, 5(1), 36–50.

    Article  CAS  PubMed  Google Scholar 

  25. Solter, D. (2006). From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nature Reviews Genetics, 7(4), 319–327.

    Article  CAS  PubMed  Google Scholar 

  26. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  PubMed  Google Scholar 

  27. Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78(12), 7634–7638.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  29. Wu, D. C., Boyd, A. S., & Wood, K. J. (2008). Embryonic stem cells and their differentiated derivatives have a fragile immune privilege but still represent novel targets of immune attack. Stem Cells, 26(8), 1939–1950.

    Article  PubMed  CAS  Google Scholar 

  30. Macarthur, B. D., Ma'ayan, A., & Lemischka, I. R. (2009). Systems biology of stem cell fate and cellular reprogramming. Nature Reviews Molecular Cell Biology, 10(10), 672–681.

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B., & Anversa, P. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.

    Article  CAS  PubMed  Google Scholar 

  32. Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., Giacomello, A., Abraham, M. R., & Marban, E. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.

    Article  PubMed  CAS  Google Scholar 

  33. Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., Heffernan, C., Menon, M. K., Scarlett, C. J., Rashidianfar, A., Biben, C., Zoellner, H., Colvin, E. K., Pimanda, J. E., Biankin, A. V., Zhou, B., Pu, W. T., Prall, O. W., & Harvey, R. P. (2011). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9(6), 527–540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ellison, G. M., Torella, D., Dellegrottaglie, S., Perez-Martinez, C., Perez de Prado, A., Vicinanza, C., Purushothaman, S., Galuppo, V., Iaconetti, C., Waring, C. D., Smith, A., Torella, M., Cuellas Ramon, C., Gonzalo-Orden, J. M., Agosti, V., Indolfi, C., Galinanes, M., Fernandez-Vazquez, F., & Nadal-Ginard, B. (2011). Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. Journal of the American College of Cardiology, 58(9), 977–986.

    Article  CAS  PubMed  Google Scholar 

  35. Mercola, M., Ruiz-Lozano, P., & Schneider, M. D. (2011). Cardiac muscle regeneration: lessons from development. Genes & Development, 25(4), 299–309.

    Article  CAS  Google Scholar 

  36. Ellison, G. M., Torella, D., Karakikes, I., & Nadal-Ginard, B. (2007). Myocyte death and renewal: modern concepts of cardiac cellular homeostasis. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S52–59.

    Article  CAS  PubMed  Google Scholar 

  37. Torella, D., Ellison, G. M., & Nadal-Ginard, B. (2014). Adult c-kit (pos) cardiac stem cells fulfill Koch's postulates as causal agents for cardiac regeneration. Circulation Research, 114(4), e24–26.

    Article  CAS  PubMed  Google Scholar 

  38. van Berlo, J. H., Kanisicak, O., Maillet, M., Vagnozzi, R. J., Karch, J., Lin, S. C., Middleton, R. C., Marban, E., & Molkentin, J. D. (2014). c-kit + cells minimally contribute cardiomyocytes to the heart. Nature, 509(7500), 337–341.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Olson, E. N. (2004). A decade of discoveries in cardiac biology. Nature Medicine, 10(5), 467–474.

    Article  CAS  PubMed  Google Scholar 

  40. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  CAS  PubMed  Google Scholar 

  41. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861–872.

    Article  CAS  PubMed  Google Scholar 

  42. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., & Daley, G. Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.

    Article  CAS  PubMed  Google Scholar 

  43. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  44. Martinez-Fernandez, A., Nelson, T. J., Ikeda, Y., & Terzic, A. (2010). c-MYC independent nuclear reprogramming favors cardiogenic potential of induced pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(1), 13–23.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Nelson, T. J., Martinez-Fernandez, A., Yamada, S., Perez-Terzic, C., Ikeda, Y., & Terzic, A. (2009). Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation, 120(5), 408–416.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Nelson, T. J., Behfar, A., Yamada, S., Martinez-Fernandez, A., & Terzic, A. (2009). Stem cell platforms for regenerative medicine. Clinical and Translational Science, 2(3), 222–227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Yamanaka, S. (2007). Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 1(1), 39–49.

    Article  CAS  PubMed  Google Scholar 

  48. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., Nakagawa, M., Koyanagi, M., Tanabe, K., Ohnuki, M., Ogawa, D., Ikeda, E., Okano, H., & Yamanaka, S. (2009). Variation in the safety of induced pluripotent stem cell lines. Nature Biotechnology, 27(8), 743–745.

    Article  CAS  PubMed  Google Scholar 

  49. Wyles, S. P., Yamada, S., Oommen, S., Maleszewski, J. J., Beraldi, R., Martinez-Fernandez, A., Terzic, A., & Nelson, T. J. (2014). Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells and: Development.

    Google Scholar 

  50. Hunt, S. A., Baker, D. W., Chin, M. H., Cinquegrani, M. P., Feldman, A. M., Francis, G. S., Ganiats, T. G., Goldstein, S., Gregoratos, G., Jessup, M. L., Noble, R. J., Packer, M., Silver, M. A., Stevenson, L. W., Gibbons, R. J., Antman, E. M., Alpert, J. S., Faxon, D. P., Fuster, V., Jacobs, A. K., Hiratzka, L. F., Russell, R. O., & Smith, S. C., Jr. (2001). ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the International Society for Heart and Lung Transplantation; Endorsed by the Heart Failure Society of America. Circulation, 104(24), 2996–3007.

    Article  CAS  PubMed  Google Scholar 

  51. Xin, M., Olson, E. N., & Bassel-Duby, R. (2013). Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nature Reviews Molecular Cell Biology, 14(8), 529–541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Aderem, A. (2005). Systems biology: its practice and challenges. Cell, 121(4), 511–513.

    Article  CAS  PubMed  Google Scholar 

  53. Caron, H., van Schaik, B., van der Mee, M., Baas, F., Riggins, G., van Sluis, P., Hermus, M. C., van Asperen, R., Boon, K., Voute, P. A., Heisterkamp, S., van Kampen, A., & Versteeg, R. (2001). The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science, 291(5507), 1289–1292.

    Article  CAS  PubMed  Google Scholar 

  54. Martinez-Fernandez, A., Li, X., Hartjes, K. A., Terzic, A., & Nelson, T. J. (2013). Natural cardiogenesis-based template predicts cardiogenic potential of induced pluripotent stem cell lines. Circulation. Cardiovascular Genetics, 6(5), 462–471.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bruneau, B. G. (2013). Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harbor Perspectives in Biology, 5(3), a008292.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  56. Faustino, R. S., Behfar, A., Perez-Terzic, C., & Terzic, A. (2008). Genomic chart guiding embryonic stem cell cardiopoiesis. Genome Biology, 9(1), R6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26(6), 1464–1473.

    Article  CAS  PubMed  Google Scholar 

  58. Behfar, A., Perez-Terzic, C., Faustino, R. S., Arrell, D. K., Hodgson, D. M., Yamada, S., Puceat, M., Niederlander, N., Alekseev, A. E., Zingman, L. V., & Terzic, A. (2007). Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 204(2), 405–420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Gersh, B. J., Simari, R. D., Behfar, A., Terzic, C. M., & Terzic, A. (2009). Cardiac cell repair therapy: a clinical perspective. Mayo Clinic Proceedings, 84(10), 876–892.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Olson, E. N., & Schneider, M. D. (2003). Sizing up the heart: development redux in disease. Genes & Development, 17(16), 1937–1956.

    Article  CAS  Google Scholar 

  61. Xu, C., Police, S., Hassanipour, M., & Gold, J. D. (2006). Cardiac bodies: a novel culture method for enrichment of cardiomyocytes derived from human embryonic stem cells. Stem Cells and Development, 15(5), 631–639.

    Article  CAS  PubMed  Google Scholar 

  62. Yang, L., Soonpaa, M. H., Adler, E. D., Roepke, T. K., Kattman, S. J., Kennedy, M., Henckaerts, E., Bonham, K., Abbott, G. W., Linden, R. M., Field, L. J., & Keller, G. M. (2008). Human cardiovascular progenitor cells develop from a KDR + embryonic-stem-cell-derived population. Nature, 453(7194), 524–528.

    Article  CAS  PubMed  Google Scholar 

  63. High, F. A., & Epstein, J. A. (2008). The multifaceted role of Notch in cardiac development and disease. Nature Reviews Genetics, 9(1), 49–61.

    Article  CAS  PubMed  Google Scholar 

  64. Rentschler, S., Yen, A. H., Lu, J., Petrenko, N. B., Lu, M. M., Manderfield, L. J., Patel, V. V., Fishman, G. I., & Epstein, J. A. (2012). Myocardial Notch signaling reprograms cardiomyocytes to a conduction-like phenotype. Circulation, 126(9), 1058–1066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Cai, W., Guzzo, R. M., Wei, K., Willems, E., Davidovics, H., & Mercola, M. (2012). A Nodal-to-TGFbeta cascade exerts biphasic control over cardiopoiesis. Circulation Research, 111(7), 876–881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Li, X., Martinez-Fernandez, A., Hartjes, K. A., Kocher, J. P., Olson, T. M., Terzic, A., & Nelson, T. J. (2014). Transcriptional Atlas of Cardiogenesis Maps Congenital Heart Disease Interactome. Physiology: Genomics.

    Google Scholar 

  67. Terami, H., Hidaka, K., Shirai, M., Narumiya, H., Kuroyanagi, T., Arai, Y., Aburatani, H., & Morisaki, T. (2007). Efficient capture of cardiogenesis-associated genes expressed in ES cells. Biochemical and Biophysical Research Communications, 355(1), 47–53.

    Article  CAS  PubMed  Google Scholar 

  68. Behfar, A., & Terzic, A. (2007). Cardioprotective repair through stem cell-based cardiopoiesis. Journal of Applied Physiology, 103(4), 1438–1440.

    Article  PubMed  Google Scholar 

  69. Ross, R. S., & Borg, T. K. (2001). Integrins and the myocardium. Circulation Research, 88(11), 1112–1119.

    Article  CAS  PubMed  Google Scholar 

  70. Schlesinger, J., Schueler, M., Grunert, M., Fischer, J. J., Zhang, Q., Krueger, T., Lange, M., Tonjes, M., Dunkel, I., & Sperling, S. R. (2011). The cardiac transcription network modulated by Gata4, Mef2a, Nkx2.5, Srf, histone modifications, and microRNAs. PLoS Genetics, 7(2), e1001313.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang H, Zhang Q, Fang X (2014) Transcriptomics and proteomics in stem cell research. Frontiers in Medicine.

  72. Van Hoof, D., Heck, A. J., Krijgsveld, J., & Mummery, C. L. (2008). Proteomics and human embryonic stem cells. Stem Cell Research, 1(3), 169–182.

    Article  PubMed  CAS  Google Scholar 

  73. Baharvand, H., Hajheidari, M., Zonouzi, R., Ashtiani, S. K., Hosseinkhani, S., & Salekdeh, G. H. (2006). Comparative proteomic analysis of mouse embryonic stem cells and neonatal-derived cardiomyocytes. Biochemical and Biophysical Research Communications, 349(3), 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  74. Cao, F., Wagner, R. A., Wilson, K. D., Xie, X., Fu, J. D., Drukker, M., Lee, A., Li, R. A., Gambhir, S. S., Weissman, I. L., Robbins, R. C., & Wu, J. C. (2008). Transcriptional and functional profiling of human embryonic stem cell-derived cardiomyocytes. PLoS ONE, 3(10), e3474.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Yin, X., Mayr, M., Xiao, Q., Wang, W., & Xu, Q. (2006). Proteomic analysis reveals higher demand for antioxidant protection in embryonic stem cell-derived smooth muscle cells. Proteomics, 6(24), 6437–6446.

    Article  CAS  PubMed  Google Scholar 

  76. Mayr, M., Madhu, B., & Xu, Q. (2007). Proteomics and metabolomics combined in cardiovascular research. Trends in Cardiovascular Medicine, 17(2), 43–48.

    Article  CAS  PubMed  Google Scholar 

  77. Prudhomme, W., Daley, G. Q., Zandstra, P., & Lauffenburger, D. A. (2004). Multivariate proteomic analysis of murine embryonic stem cell self-renewal versus differentiation signaling. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2900–2905.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Arrell, D. K., Niederlander, N. J., Perez-Terzic, C., Chung, S., Behfar, A., & Terzic, A. (2007). Pharmacoproteomics: advancing the efficacy and safety of regenerative therapeutics. Clinical Pharmacology & Therapeutics, 82(3), 316–319.

    Article  CAS  Google Scholar 

  79. Arrell, D. K., Niederlander, N. J., Faustino, R. S., Behfar, A., & Terzic, A. (2008). Cardioinductive network guiding stem cell differentiation revealed by proteomic cartography of tumor necrosis factor alpha-primed endodermal secretome. Stem Cells, 26(2), 387–400.

    Article  CAS  PubMed  Google Scholar 

  80. Chiriac, A., Nelson, T. J., Faustino, R. S., Behfar, A., & Terzic, A. (2010). Cardiogenic induction of pluripotent stem cells streamlined through a conserved SDF-1/VEGF/BMP2 integrated network. PLoS ONE, 5(4), e9943.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Fraidenraich, D., Stillwell, E., Romero, E., Wilkes, D., Manova, K., Basson, C. T., & Benezra, R. (2004). Rescue of cardiac defects in id knockout embryos by injection of embryonic stem cells. Science, 306(5694), 247–252.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Doss, M. X., Chen, S., Winkler, J., Hippler-Altenburg, R., Odenthal, M., Wickenhauser, C., Balaraman, S., Schulz, H., Hummel, O., Hubner, N., Ghosh-Choudhury, N., Sotiriadou, I., Hescheler, J., & Sachinidis, A. (2007). Transcriptomic and phenotypic analysis of murine embryonic stem cell derived BMP2+ lineage cells: an insight into mesodermal patterning. Genome Biology, 8(9), R184.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Bader, A., Al-Dubai, H., & Weitzer, G. (2000). Leukemia inhibitory factor modulates cardiogenesis in embryoid bodies in opposite fashions. Circulation Research, 86(7), 787–794.

    Article  CAS  PubMed  Google Scholar 

  84. Prigione, A., Fauler, B., Lurz, R., Lehrach, H., & Adjaye, J. (2010). The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28(4), 721–733.

    Article  CAS  PubMed  Google Scholar 

  85. Folmes, C. D., Martinez-Fernandez, A., Perales-Clemente, E., Li, X., McDonald, A., Oglesbee, D., Hrstka, S. C., Perez-Terzic, C., Terzic, A., & Nelson, T. J. (2013). Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS. Stem Cells, 31(7), 1298–1308.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Chung, S., Arrell, D. K., Faustino, R. S., Terzic, A., & Dzeja, P. P. (2010). Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation. Journal of Molecular and Cellular Cardiology, 48(4), 725–734.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Patti, G. J., Yanes, O., & Siuzdak, G. (2012). Innovation: Metabolomics: the apogee of the omics trilogy. Nature Reviews Molecular Cell Biology, 13(4), 263–269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Folmes, C. D., Nelson, T. J., Martinez-Fernandez, A., Arrell, D. K., Lindor, J. Z., Dzeja, P. P., Ikeda, Y., Perez-Terzic, C., & Terzic, A. (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metabolism, 14(2), 264–271.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Panopoulos, A. D., Yanes, O., Ruiz, S., Kida, Y. S., Diep, D., Tautenhahn, R., Herrerias, A., Batchelder, E. M., Plongthongkum, N., Lutz, M., Berggren, W. T., Zhang, K., Evans, R. M., Siuzdak, G., & Izpisua Belmonte, J. C. (2012). The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 22(1), 168–177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Ezashi, T., Das, P., & Roberts, R. M. (2005). Low O2 tensions and the prevention of differentiation of hES cells. Proceedings of the National Academy of Sciences of the United States of America, 102(13), 4783–4788.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Westfall, S. D., Sachdev, S., Das, P., Hearne, L. B., Hannink, M., Roberts, R. M., & Ezashi, T. (2008). Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells and Development, 17(5), 869–881.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Mohyeldin, A., Garzon-Muvdi, T., & Quinones-Hinojosa, A. (2010). Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 7(2), 150–161.

    Article  CAS  PubMed  Google Scholar 

  93. Chung, S., Dzeja, P. P., Faustino, R. S., Perez-Terzic, C., Behfar, A., & Terzic, A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nature Clinical Practice. Cardiovascular Medicine, 4(Suppl 1), S60–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Cho, Y. M., Kwon, S., Pak, Y. K., Seol, H. W., Choi, Y. M., do Park, J., Park, K. S., & Lee, H. K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochemical and Biophysical Research Communications, 348(4), 1472–1478.

    Article  CAS  PubMed  Google Scholar 

  95. Suresh, R., Li, X., Chiriac, A., Goel, K., Terzic, A., Perez-Terzic, C., & Nelson, T. J. (2014). Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. Journal of Molecular and Cellular Cardiology, 74C, 13–21.

    Article  CAS  Google Scholar 

  96. Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., Beache, G. M., Wagner, S. G., Leri, A., Hosoda, T., Sanada, F., Elmore, J. B., Goichberg, P., Cappetta, D., Solankhi, N. K., Fahsah, I., Rokosh, D. G., Slaughter, M. S., Kajstura, J., & Anversa, P. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378(9806), 1847–1857.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Bartunek, J., Vanderheyden, M., Hill, J., & Terzic, A. (2010). Cells as biologics for cardiac repair in ischaemic heart failure. Heart, 96(10), 792–800.

    Article  PubMed  Google Scholar 

  98. Behfar, A., Crespo-Diaz, R., Terzic, A., & Gersh, B. J. (2014). Cell therapy for cardiac repair–lessons from clinical trials. Nature Reviews Cardiology, 11(4), 232–246.

    Article  PubMed  Google Scholar 

  99. Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., Czer, L. S., Marban, L., Mendizabal, A., Johnston, P. V., Russell, S. D., Schuleri, K. H., Lardo, A. C., Gerstenblith, G., & Marban, E. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet, 379(9819), 895–904.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Terzic, A., & Behfar, A. (2014). Regenerative heart failure therapy headed for optimization. European Heart Journal, 35(19), 1231–1234.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Dimmeler, S., & Zeiher, A. M. (2009). Cell therapy of acute myocardial infarction: open questions. Cardiology, 113(3), 155–160.

    Article  PubMed  Google Scholar 

  102. Wollert, K. C., & Drexler, H. (2010). Cell therapy for the treatment of coronary heart disease: a critical appraisal. Nature Reviews Cardiology, 7(4), 204–215.

    Article  PubMed  Google Scholar 

  103. Behfar, A., Crespo-Diaz, R., Nelson, T. J., Terzic, A., & Gersh, B. J. (2010). Stem cells: clinical trials results the end of the beginning or the beginning of the end? Cardiovascular & Hematological Disorders-Drug Targets, 10(3), 186–201.

    Article  CAS  Google Scholar 

  104. Ellison, G. M., Nadal-Ginard, B., & Torella, D. (2012). Optimizing Cardiac Repair and Regeneration Through Activation of the Endogenous Cardiac Stem Cell Compartment. Journal of Cardiovascular Translational: Research.

    Google Scholar 

  105. Nadal-Ginard, B., Ellison, G. M., & Torella, D. (2014). The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell: Research.

    Google Scholar 

Download references

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Nelson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wyles, S.P., Faustino, R.S., Li, X. et al. Systems-Based Technologies in Profiling the Stem Cell Molecular Framework for Cardioregenerative Medicine. Stem Cell Rev and Rep 11, 501–510 (2015). https://doi.org/10.1007/s12015-014-9557-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-014-9557-5

Keywords

Navigation