Skip to main content
Log in

Mammalian Cell Dedifferentiation as a Possible Outcome of Stress

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Differentiation cascades are arranged hierarchically; stem cells positioned at the top of the hierarchy generate committed progenitors that, in turn, proliferate and further differentiate stepwise into mature progeny. This rigid, irreversible structure ensures the phenotypic stability of adult tissues. However, such rigidity may be problematic under conditions of tissue damage when reconstitution is required. Although it may seem unlikely that the restrictions on changes in cell phenotypes would be lifted to enable tissue reconstitution, it is nevertheless possible that mammalian tissues are endowed with sufficient flexibility to enable their adaptation to extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anjos-Afonso, F., & Bonnet, D. (2007). Nonhematopoietic/endothelial SSEA-1+ cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood, 109, 1298–1306.

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong, L., Lako, M., Dean, W., & Stojkovic, M. (2006). Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells, 24, 805–814.

    Article  PubMed  Google Scholar 

  3. Barroca, V., Lassalle, B., Coureuil, M., Louis, J. P., Le Page, F., Testart, J., et al. (2009). Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nat Cell Biol, 11, 190–196.

    Article  PubMed  CAS  Google Scholar 

  4. Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.

    Article  PubMed  CAS  Google Scholar 

  5. Bhutani, N., Brady, J. J., Damian, M., Sacco, A., Corbel, S. Y., & Blau, H. M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature, 463, 1042–1047.

    Article  PubMed  CAS  Google Scholar 

  6. Birnbaum, K. D., & Sanchez Alvarado, A. (2008). Slicing across kingdoms: regeneration in plants and animals. Cell, 132, 697–710.

    Article  PubMed  CAS  Google Scholar 

  7. Brawley, C., & Matunis, E. (2004). Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science, 304, 1331–1334.

    Article  PubMed  CAS  Google Scholar 

  8. Chen, Z. L., Yu, W. M., & Strickland, S. (2007). Peripheral regeneration. Annu Rev Neurosci, 30, 209–233.

    Article  PubMed  Google Scholar 

  9. Cohen, A. R., Gomes, F. L., Roysam, B., & Cayouette, M. (2010). Computational prediction of neural progenitor cell fates. Nat Methods, 7, 213–218.

    Article  PubMed  CAS  Google Scholar 

  10. Efroni, S., Duttagupta, R., Cheng, J., Dehghani, H., Hoeppner, D. J., Dash, C., et al. (2008). Global transcription in pluripotent embryonic stem cells. Cell Stem Cell, 2, 437–447.

    Article  PubMed  CAS  Google Scholar 

  11. Epsztejn-Litman, S., Feldman, N., Abu-Remaileh, M., Shufaro, Y., Gerson, A., Ueda, J., et al. (2008). De novo DNA methylation promoted by G9a prevents reprogramming of embryonically silenced genes. Nat Struct Mol Biol, 15, 1176–1183.

    Article  PubMed  CAS  Google Scholar 

  12. Flores, I., Canela, A., Vera, E., Tejera, A., Cotsarelis, G., & Blasco, M. A. (2008). The longest telomeres: a general signature of adult stem cell compartments. Genes Dev, 22, 654–667.

    Article  PubMed  CAS  Google Scholar 

  13. Gaspar-Maia, A., Alajem, A., Polesso, F., Sridharan, R., Mason, M. J., Heidersbach, A., et al. (2009). Chd1 regulates open chromatin and pluripotency of embryonic stem cells. Nature, 460, 863–868.

    PubMed  CAS  Google Scholar 

  14. Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460.

    Article  PubMed  CAS  Google Scholar 

  15. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., & Verfaillie, C. M. (2002). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol, 30, 896–904.

    Article  PubMed  CAS  Google Scholar 

  16. Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128, 683–692.

    Article  PubMed  CAS  Google Scholar 

  17. Jopling, C., Sleep, E., Raya, M., Marti, M., Raya, A., & Belmonte, J. C. (2010). Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 464, 606–609.

    Article  PubMed  CAS  Google Scholar 

  18. Kilian, A., Stiff, C., & Kleinhofs, A. (1995). Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci U S A, 92, 9555–9559.

    Article  PubMed  CAS  Google Scholar 

  19. Klein, A. M., Nakagawa, T., Ichikawa, R., Yoshida, S., & Simons, B. D. (2010). Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell, 7, 214–224.

    Article  PubMed  CAS  Google Scholar 

  20. Ko, K., Tapia, N., Wu, G., Kim, J. B., Bravo, M. J., Sasse, P., et al. (2009). Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell, 5, 87–96.

    Article  PubMed  CAS  Google Scholar 

  21. Kucia, M., Reca, R., Campbell, F. R., Zuba-Surma, E., Majka, M., Ratajczak, J., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20, 857–869.

    Article  PubMed  CAS  Google Scholar 

  22. Kuroda, Y., Kitada, M., Wakao, S., Nishikawa, K., Tanimura, Y., Makinoshima, H., et al. (2010). Unique multipotent cells in adult human mesenchymal cell populations. Proc Natl Acad Sci U S A, 107, 8639–8643.

    Article  PubMed  CAS  Google Scholar 

  23. Lee, H. K., Shin, Y. K., Jung, J., Seo, S. Y., Baek, S. Y., & Park, H. T. (2009). Proteasome inhibition suppresses Schwann cell dedifferentiation in vitro and in vivo. Glia, 57, 1825–1834.

    Article  PubMed  Google Scholar 

  24. Li, W. C., Rukstalis, J. M., Nishimura, W., Tchipashvili, V., Habener, J. F., Sharma, A., et al. (2010). Activation of pancreatic-duct-derived progenitor cells during pancreas regeneration in adult rats. J Cell Sci, 123, 2792–2802.

    Article  PubMed  CAS  Google Scholar 

  25. Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., et al. (2007). Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70.

    Article  PubMed  CAS  Google Scholar 

  26. Marion, R. M., Strati, K., Li, H., Tejera, A., Schoeftner, S., Ortega, S., et al. (2009). Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell, 4, 141–154.

    Article  PubMed  CAS  Google Scholar 

  27. Meech, R., Gomez, M., Woolley, C., Barro, M., Hulin, J. A., Walcott, E. C., et al. (2010). The homeobox transcription factor Barx2 regulates plasticity of young primary myofibers. PLoS One, 5, e11612.

    Article  PubMed  Google Scholar 

  28. Michalopoulos, G. K., & DeFrances, M. C. (1997). Liver regeneration. Science, 276, 60–66.

    Article  PubMed  CAS  Google Scholar 

  29. Michalopoulos, G. K., Barua, L., & Bowen, W. C. (2005). Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology, 41, 535–544.

    Article  PubMed  CAS  Google Scholar 

  30. Monje, P. V., Soto, J., Bacallao, K., & Wood, P. M. (2010). Schwann cell dedifferentiation is independent of mitogenic signaling and uncoupled to proliferation: Role of cAMP and JNK the maintenance of the differentiated state. J Biol Chem, 285, 31024–31036.

    Article  PubMed  CAS  Google Scholar 

  31. Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R. E., & Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science, 328, 62–67.

    Article  PubMed  CAS  Google Scholar 

  32. Niemann, H., Tian, X. C., King, W. A., & Lee, R. S. (2008). Epigenetic reprogramming in embryonic and foetal development upon somatic cell nuclear transfer cloning. Reproduction, 135, 151–163.

    Article  PubMed  CAS  Google Scholar 

  33. Notaro, R., Cimmino, A., Tabarini, D., Rotoli, B., & Luzzatto, L. (1997). In vivo telomere dynamics of human hematopoietic stem cells. Proc Natl Acad Sci U S A, 94, 13782–13785.

    Article  PubMed  CAS  Google Scholar 

  34. Odelberg, S. J., Kollhoff, A., & Keating, M. T. (2000). Dedifferentiation of mammalian myotubes induced by msx1. Cell, 103, 1099–1109.

    Article  PubMed  CAS  Google Scholar 

  35. Ohm, J. E., Mali, P., Van Neste, L., Berman, D. M., Liang, L., Pandiyan, K., et al. (2010). Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Research, 70(19), 7662–7673.

    Article  PubMed  CAS  Google Scholar 

  36. Prindull, G., & Zipori, D. (2004). Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood, 103(8), 2892–9.

    Article  PubMed  CAS  Google Scholar 

  37. Red-Horse, K., Ueno, H., Weissman, I. L., & Krasnow, M. A. (2010). Coronary arteries form by developmental reprogramming of venous cells. Nature, 464, 549–553.

    Article  PubMed  CAS  Google Scholar 

  38. Salo, E., Abril, J. F., Adell, T., Cebria, F., Eckelt, K., Fernandez-Taboada, E., et al. (2009). Planarian regeneration: achievements and future directions after 20 years of research. Int J Dev Biol, 53, 1317–1327.

    Article  PubMed  Google Scholar 

  39. Sanchez Alvarado, A. (2006). Planarian regeneration: its end is its beginning. Cell, 124, 241–245.

    Article  PubMed  CAS  Google Scholar 

  40. Simon, L., Ekman, G. C., Kostereva, N., Zhang, Z., Hess, R. A., Hofmann, M. C., et al. (2009). Direct transdifferentiation of stem/progenitor spermatogonia into reproductive and nonreproductive tissues of all germ layers. Stem Cells, 27, 1666–1675.

    Article  PubMed  CAS  Google Scholar 

  41. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  42. Thorel, F., Nepote, V., Avril, I., Kohno, K., Desgraz, R., Chera, S., et al. (2010). Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature, 464, 1149–1154.

    Article  PubMed  CAS  Google Scholar 

  43. Zhao, T., & Xu, Y. (2010). p53 and stem cells: new developments and new concerns. Trends Cell Biol, 20, 170–175.

    Article  PubMed  CAS  Google Scholar 

  44. Zhao, X. Y., Su, Y. H., Cheng, Z. J., & Zhang, X. S. (2008). Cell fate switch during in vitro plant organogenesis. J Integr Plant Biol, 50, 816–824.

    Article  PubMed  CAS  Google Scholar 

  45. Zipori, D. (2004). The nature of stem cells: state rather than entity. Nat Rev Genet, 5, 873–878.

    Article  PubMed  CAS  Google Scholar 

  46. Zipori, D. (2009). Biology of stem cells and the molecular basis of the stem state. New York: Humana Press.

  47. Zipori, D. (2009b). The stem state: Stemness as a state in the cell’s life cycle. In K. Turksen (Ed.), Biology of stem cells and the molecular basis of the stem state, Chapter 6. Series: Stem cell biology and regenerative medicine (pp. 200–206). New York: Humana Press.

Download references

Conflict of Interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dov Zipori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoshani, O., Zipori, D. Mammalian Cell Dedifferentiation as a Possible Outcome of Stress. Stem Cell Rev and Rep 7, 488–493 (2011). https://doi.org/10.1007/s12015-011-9231-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9231-0

Keywords

Navigation