Skip to main content

Advertisement

Log in

Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors—The Influence of Differentiation Factors and Culture Conditions

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

The differentiation of murine and human embryonic stem (ES) cells into pancreatic cell types has been shown by several methods including spontaneous differentiation, formation of multi-lineage progenitors, lineage selection or transgene expression. However, these strategies led to a mixture of cells of all three primary germ layers and only a low percentage of definitive endoderm cells giving rise to pancreas, liver, lung and intestine. To reproducibly generate functional insulin-producing cells, ES cells have to be differentiated via definitive endoderm and pancreatic endocrine progenitors recapitulating the in vivo development. Activin A, a member of the transforming growth factor beta superfamily, has been shown to induce definitive endoderm cells dependent on concentration, culture conditions and time of application. Moreover, serum components or contamination by feeder cells as well as differentiation and proliferation factors are critical for successful generation of activin A-induced ES cells into endoderm and pancreatic cells. The review presents an overview on those factors that influence activin A activity on endoderm and endocrine progenitor cells and determines the role of signaling factors in the differentiation process into the pancreatic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., et al. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  3. Wobus, A. M., & Boheler, K. R. (2005). Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiological Reviews, 85(2), 635–678.

    Article  PubMed  CAS  Google Scholar 

  4. Murry, C. E., & Keller, G. (2008). Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development. Cell, 132(4), 661–680.

    Article  PubMed  CAS  Google Scholar 

  5. Klimanskaya, I., Chung, Y., Becker, S., Lu, S. J., & Lanza, R. (2007). Derivation of human embryonic stem cells from single blastomeres. Nature Protocols, 2(8), 1963–1972.

    Article  PubMed  CAS  Google Scholar 

  6. Wells, J. M., & Melton, D. A. (1999). Vertebrate endoderm development. Annual Review of Cell and Developmental Biology, 15, 393–410.

    Article  PubMed  CAS  Google Scholar 

  7. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., et al. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26(4), 443–452.

    Article  PubMed  CAS  Google Scholar 

  8. D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., et al. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24(11), 1392–1401.

    Article  PubMed  CAS  Google Scholar 

  9. Stewart, M. H., Bosse, M., Chadwick, K., Menendez, P., Bendall, S. C., & Bhatia, M. (2006). Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nature Methods, 3(10), 807–815.

    Article  PubMed  CAS  Google Scholar 

  10. Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., et al. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315.

    Article  PubMed  CAS  Google Scholar 

  11. Kahan, B. W., Jacobson, L. M., Hullett, D. A., Ochoada, J. M., Oberley, T. D., Lang, K. M., et al. (2003). Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: An in vitro model to study islet differentiation. Diabetes, 52(8), 2016–2024.

    Article  PubMed  CAS  Google Scholar 

  12. Leon-Quinto, T., Jones, J., Skoudy, A., Burcin, M., & Soria, B. (2004). In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia, 47(8), 1442–1451.

    Article  PubMed  CAS  Google Scholar 

  13. Soria, B., Roche, E., Berna, G., Leon-Quinto, T., Reig, J. A., & Martin, F. (2000). Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes, 49(2), 157–162.

    Article  PubMed  CAS  Google Scholar 

  14. Blyszczuk, P., Czyz, J., Kania, G., Wagner, M., Roll, U., St Onge, L., et al. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 998–1003.

    Article  PubMed  CAS  Google Scholar 

  15. Boretti, M. I., & Gooch, K. J. (2007). Transgene expression level and inherent differences in target gene activation determine the rate and fate of neurogenin3-mediated islet cell differentiation in vitro. Tissue Engineering, 13(4), 775–788.

    Article  PubMed  CAS  Google Scholar 

  16. Ku, H. T., Zhang, N., Kubo, A., O’Connor, R., Mao, M., Keller, G., et al. (2004). Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells, 22(7), 1205–1217.

    Article  PubMed  Google Scholar 

  17. Ku, H. T., Chai, J., Kim, Y. J., White, P., Purohit-Ghelani, S., Kaestner, K. H., et al. (2007). Insulin-expressing colonies developed from murine embryonic stem cell-derived progenitors. Diabetes, 56(4), 921–929.

    Article  PubMed  CAS  Google Scholar 

  18. Miyazaki, S., Yamato, E., & Miyazaki, J. (2004). Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes, 53(4), 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  19. Serafimidis, I., Rakatzi, I., Episkopou, V., Gouti, M., & Gavalas, A. (2008). Novel effectors of directed and Ngn3-mediated differentiation of mouse embryonic stem cells into endocrine pancreas progenitors. Stem Cells, 26(1), 3–16.

    Article  PubMed  CAS  Google Scholar 

  20. Shiroi, A., Ueda, S., Ouji, Y., Saito, K., Moriya, K., Sugie, Y., et al. (2005). Differentiation of embryonic stem cells into insulin-producing cells promoted by Nkx2.2 gene transfer. World Journal of Gastroenterology, 11(27), 4161–4166.

    PubMed  CAS  Google Scholar 

  21. Treff, N. R., Vincent, R. K., Budde, M. L., Browning, V. L., Magliocca, J. F., Kapur, V., et al. (2006). Differentiation of embryonic stem cells conditionally expressing neurogenin 3. Stem Cells, 24(11), 2529–2537.

    Article  PubMed  CAS  Google Scholar 

  22. Hori, Y., Rulifson, I. C., Tsai, B. C., Heit, J. J., Cahoy, J. D., & Kim, S. K. (2002). Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16105–16110.

    Article  PubMed  CAS  Google Scholar 

  23. Micallef, S. J., Janes, M. E., Knezevic, K., Davis, R. P., Elefanty, A. G., & Stanley, E. G. (2005). Retinoic acid induces Pdx1-positive endoderm in differentiating mouse embryonic stem cells. Diabetes, 54(2), 301–305.

    Article  PubMed  CAS  Google Scholar 

  24. Shi, Y., Hou, L., Tang, F., Jiang, W., Wang, P., Ding, M., et al. (2005). Inducing embryonic stem cells to differentiate into pancreatic beta cells by a novel three-step approach with activin A and all-trans retinoic acid. Stem Cells, 23(5), 656–662.

    Article  PubMed  CAS  Google Scholar 

  25. McKiernan, E., O’Driscoll, L., Kasper, M., Barron, N., O’Sullivan, F., & Clynes, M. (2007). Directed differentiation of mouse embryonic stem cells into pancreatic-like or neuronal- and glial-like phenotypes. Tissue Engineering, 13(10), 2419–2430.

    Article  PubMed  CAS  Google Scholar 

  26. Vaca, P., Martin, F., Vegara-Meseguer, J. M., Rovira, J. M., Berna, G., & Soria, B. (2006). Induction of differentiation of embryonic stem cells into insulin-secreting cells by fetal soluble factors. Stem Cells, 24(2), 258–265.

    Article  PubMed  CAS  Google Scholar 

  27. Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., & McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292(5520), 1389–1394.

    Article  PubMed  CAS  Google Scholar 

  28. Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., & Melton, D. A. (2003). Insulin staining of ES cell progeny from insulin uptake. Science, 299(5605), 363.

    PubMed  Google Scholar 

  29. Sipione, S., Eshpeter, A., Lyon, J. G., Korbutt, G. S., & Bleackley, R. C. (2004). Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia, 47(3), 499–508.

    Article  PubMed  CAS  Google Scholar 

  30. Hansson, M., Tonning, A., Frandsen, U., Petri, A., Rajagopal, J., Englund, M. C., et al. (2004). Artifactual insulin release from differentiated embryonic stem cells. Diabetes, 53(10), 2603–2609.

    Article  PubMed  CAS  Google Scholar 

  31. Paek, H. J., Morgan, J. R., & Lysaght, M. J. (2005). Sequestration and synthesis: The source of insulin in cell clusters differentiated from murine embryonic stem cells. Stem Cells, 23(7), 862–867.

    Article  PubMed  CAS  Google Scholar 

  32. Gradwohl, G., Dierich, A., LeMeur, M., & Guillemot, F. (2000). Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1607–1611.

    Article  PubMed  CAS  Google Scholar 

  33. Lee, J., Wu, Y., Qi, Y., Xue, H., Liu, Y., Scheel, D., et al. (2003). Neurogenin3 participates in gliogenesis in the developing vertebrate spinal cord. Developments in Biologicals, 253(1), 84–98.

    Article  CAS  Google Scholar 

  34. Habener, J. F., Kemp, D. M., & Thomas, M. K. (2005). Minireview: Transcriptional regulation in pancreatic development. Endocrinology, 146(3), 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  35. Nakagawa, Y., & O’Leary, D. D. (2001). Combinatorial expression patterns of LIM-homeodomain and other regulatory genes parcellate developing thalamus. Journal of Neuroscience, 21(8), 2711–2725.

    PubMed  CAS  Google Scholar 

  36. Schwitzgebel, V. M., Scheel, D. W., Conners, J. R., Kalamaras, J., Lee, J. E., Anderson, D. J., et al. (2000). Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 127(16), 3533–3542.

    PubMed  CAS  Google Scholar 

  37. Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., & McKay, R. D. (1996). Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mechanisms of Development, 59(1), 89–102.

    Article  PubMed  CAS  Google Scholar 

  38. Blyszczuk, P., Asbrand, C., Rozzo, A., Kania, G., St Onge, L., Rupnik, M., et al. (2004). Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. International Journal of Developmental Biology, 48(10), 1095–1104.

    Article  PubMed  CAS  Google Scholar 

  39. Kania, G., Blyszczuk, P., Jochheim, A., Ott, M., & Wobus, A. M. (2004). Generation of glycogen- and albumin-producing hepatocyte-like cells from embryonic stem cells. Biological Chemistry, 385(10), 943–953.

    Article  PubMed  CAS  Google Scholar 

  40. Wiese, C., Rolletschek, A., Kania, G., Blyszczuk, P., Tarasov, K. V., Tarasova, Y., et al. (2004). Nestin expression—A property of multi-lineage progenitor cells? Cellular and Molecular Life Sciences, 61(19–20), 2510–2522.

    Article  PubMed  CAS  Google Scholar 

  41. Schroeder, I. S., Rolletschek, A., Blyszczuk, P., Kania, G., & Wobus, A. M. (2006). Differentiation of mouse embryonic stem cells to insulin-producing cells. Nature Protocols, 1(2), 495–507.

    Article  PubMed  CAS  Google Scholar 

  42. Boyd, A. S., Wu, D. C., Higashi, Y., & Wood, K. J. (2008). A comparison of protocols used to generate insulin-producing cell clusters from mouse embryonic stem cells. Stem Cells, 26(5), 1128–1137.

    Article  PubMed  CAS  Google Scholar 

  43. Baetge, E. E. (2008). Production of beta-cells from human embryonic stem cells. Diabetes, Obesity and Metabolism, 10(Suppl 4), 186–194.

    Article  PubMed  Google Scholar 

  44. Smith, J. C., Price, B. M., Van Nimmen, K., & Huylebroeck, D. (1990). Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature, 345(6277), 729–731.

    Article  PubMed  CAS  Google Scholar 

  45. Gurdon, J. B., Harger, P., Mitchell, A., & Lemaire, P. (1994). Activin signalling and response to a morphogen gradient. Nature, 371(6497), 487–492.

    Article  PubMed  CAS  Google Scholar 

  46. Grapin-Botton, A., & Constam, D. (2007). Evolution of the mechanisms and molecular control of endoderm formation. Mechanisms of Development, 124(4), 253–278.

    Article  PubMed  CAS  Google Scholar 

  47. Tam, P. P., Kanai-Azuma, M., & Kanai, Y. (2003). Early endoderm development in vertebrates: Lineage differentiation and morphogenetic function. Current Opinion in Genetics & Development, 13(4), 393–400.

    Article  CAS  Google Scholar 

  48. Tam, P. P., & Loebel, D. A. (2007). Gene function in mouse embryogenesis: Get set for gastrulation. Nature Reviews. Genetics, 8(5), 368–381.

    Article  PubMed  CAS  Google Scholar 

  49. Chen, Y. G., Wang, Q., Lin, S. L., Chang, C. D., Chuang, J., & Ying, S. Y. (2006). Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Experimental Biology and Medicine (Maywood), 231(5), 534–544.

    CAS  Google Scholar 

  50. Kubo, A., Shinozaki, K., Shannon, J. M., Kouskoff, V., Kennedy, M., Woo, S., et al. (2004). Development of definitive endoderm from embryonic stem cells in culture. Development, 131(7), 1651–1662.

    Article  PubMed  CAS  Google Scholar 

  51. Tada, S., Era, T., Furusawa, C., Sakurai, H., Nishikawa, S., Kinoshita, M., et al. (2005). Characterization of mesendoderm: A diverging point of the definitive endoderm and mesoderm in embryonic stem cell differentiation culture. Development, 132(19), 4363–4374.

    Article  PubMed  CAS  Google Scholar 

  52. Iwasaki, S., Hattori, A., Sato, M., Tsujimoto, M., & Kohno, M. (1996). Characterization of the bone morphogenetic protein-2 as a neurotrophic factor. Induction of neuronal differentiation of PC12 cells in the absence of mitogen-activated protein kinase activation. Journal of Biological Chemistry, 271(29), 17360–17365.

    Article  PubMed  CAS  Google Scholar 

  53. Rolletschek, A., Kania, G., & Wobus, A. M. (2006). Generation of pancreatic insulin-producing cells from embryonic stem cells—‘Proof of principle’, but questions still unanswered. Diabetologia, 49(11), 2541–2545.

    Article  PubMed  CAS  Google Scholar 

  54. Moritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S., & Miyazaki, J. (2003). Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes, 52(5), 1163–1168.

    Article  PubMed  CAS  Google Scholar 

  55. Bai, L., Meredith, G., & Tuch, B. E. (2005). Glucagon-like peptide-1 enhances production of insulin in insulin-producing cells derived from mouse embryonic stem cells. Journal of Endocrinology, 186(2), 343–352.

    Article  PubMed  CAS  Google Scholar 

  56. Marenah, L., McCluskey, J. T., Abdel-Wahab, Y. H., O’Harte, F. P., McClenaghan, N. H., & Flatt, P. R. (2006). A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biological Chemistry, 387(7), 941–947.

    Article  PubMed  CAS  Google Scholar 

  57. Xu, X., Kahan, B., Forgianni, A., Jing, P., Jacobson, L., Browning, V., et al. (2006). Endoderm and pancreatic islet lineage differentiation from human embryonic stem cells. Cloning Stem Cells, 8(2), 96–107.

    Article  PubMed  CAS  Google Scholar 

  58. D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23(12), 1534–1541.

    Article  PubMed  CAS  Google Scholar 

  59. Gadue, P., Huber, T. L., Paddison, P. J., & Keller, G. M. (2006). Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 103(45), 16806–16811.

    Article  PubMed  CAS  Google Scholar 

  60. McLean, A. B., D’Amour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., et al. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells, 25(1), 29–38.

    Article  PubMed  CAS  Google Scholar 

  61. Price, P. J., Goldsborough, M. D., & Tilkins, M. L. (1998) Embryonic stem cell serum replacement. Patent WO 98/30679.

  62. Johansson, B. M., & Wiles, M. V. (1995). Evidence for involvement of activin A and bone morphogenetic protein 4 in mammalian mesoderm and hematopoietic development. Molecular and Cellular Biology, 15(1), 141–151.

    PubMed  CAS  Google Scholar 

  63. Proetzel, G., & Wiles, M. V. (2002). The use of a chemically defined media for the analyses of early development in ES cells and mouse embryos. Methods in Molecular Biology, 185, 17–26.

    PubMed  CAS  Google Scholar 

  64. Soto-Gutierrez, A., Kobayashi, N., Rivas-Carrillo, J. D., Navarro-Alvarez, N., Zhao, D., Okitsu, T., et al. (2006). Reversal of mouse hepatic failure using an implanted liver-assist device containing ES cell-derived hepatocytes. Nature Biotechnology, 24(11), 1412–1419.

    Article  PubMed  CAS  Google Scholar 

  65. Shim, J. H., Kim, S. E., Woo, D. H., Kim, S. K., Oh, C. H., McKay, R., et al. (2007). Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia, 50(6), 1228–1238.

    Article  PubMed  CAS  Google Scholar 

  66. Phillips, B. W., Hentze, H., Rust, W. L., Chen, Q. P., Chipperfield, H., Tan, E. K., et al. (2007). Directed differentiation of human embryonic stem cells into the pancreatic endocrine lineage. Stem Cells and Development, 16(4), 561–578.

    Article  PubMed  CAS  Google Scholar 

  67. Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., Qin, H., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45(5), 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  68. Yao, S., Chen, S., Clark, J., Hao, E., Beattie, G. M., Hayek, A., et al. (2006). Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions. Proceedings of the National Academy of Sciences of the United States of America, 103(18), 6907–6912.

    Article  PubMed  CAS  Google Scholar 

  69. Yasunaga, M., Tada, S., Torikai-Nishikawa, S., Nakano, Y., Okada, M., Jakt, L. M., et al. (2005). Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nature Biotechnology, 23(12), 1542–1550.

    Article  PubMed  CAS  Google Scholar 

  70. Gouon-Evans, V., Boussemart, L., Gadue, P., Nierhoff, D., Koehler, C. I., Kubo, A., et al. (2006). BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nature Biotechnology, 24(11), 1402–1411.

    Article  PubMed  CAS  Google Scholar 

  71. Nakanishi, M., Hamazaki, T. S., Komazaki, S., Okochi, H., & Asashima, M. (2007). Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation, 75(1), 1–11.

    Article  PubMed  CAS  Google Scholar 

  72. Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. Stem Cells, 24(6), 1476–1486.

    Article  PubMed  CAS  Google Scholar 

  73. James, D., Levine, A. J., Besser, D., & Hemmati-Brivanlou, A. (2005). TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132(6), 1273–1282.

    Article  PubMed  CAS  Google Scholar 

  74. Vallier, L., Alexander, M., & Pedersen, R. A. (2005). Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. Journal of Cell Science, 118(Pt 19), 4495–4509.

    Article  PubMed  CAS  Google Scholar 

  75. Greber, B., Lehrach, H., & Adjaye, J. (2008). Control of early fate decisions in human ES cells by distinct states of TGFss pathway activity. Stem Cells and Development, 17(6), 1065–1078.

    Article  PubMed  CAS  Google Scholar 

  76. Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., King, C. C., et al. (2005). Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23(4), 489–495.

    Article  PubMed  CAS  Google Scholar 

  77. Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448(7150), 196–199.

    Article  PubMed  CAS  Google Scholar 

  78. Brons, I. G., Smithers, L. E., Trotter, M. W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes, S. M., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448(7150), 191–195.

    Article  PubMed  CAS  Google Scholar 

  79. Niwa, H., Miyazaki, J., & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24(4), 372–376.

    Article  PubMed  CAS  Google Scholar 

  80. Rodriguez, R. T., Velkey, J. M., Lutzko, C., Seerke, R., Kohn, D. B., O’Shea, K. S., et al. (2007). Manipulation of OCT4 levels in human embryonic stem cells results in induction of differential cell types. Experimental Biology and Medicine (Maywood), 232(10), 1368–1380.

    Article  CAS  Google Scholar 

  81. Takenaga, M., Fukumoto, M., & Hori, Y. (2007). Regulated Nodal signaling promotes differentiation of the definitive endoderm and mesoderm from ES cells. Journal of Cell Science, 120(Pt 12), 2078–2090.

    Article  PubMed  CAS  Google Scholar 

  82. Frandsen, U., Porneki, A. D., Floridon, C., Abdallah, B. M., & Kassem, M. (2007). Activin B mediated induction of Pdx1 in human embryonic stem cell derived embryoid bodies. Biochemical and Biophysical Research Communications, 362(3), 568–574.

    Article  PubMed  CAS  Google Scholar 

  83. Wodarz, A., & Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annual Review of Cell and Developmental Biology, 14, 59–88.

    Article  PubMed  CAS  Google Scholar 

  84. Yamaguchi, T. P. (2001). Heads or tails: Wnts and anterior–posterior patterning. Current Biology, 11(17), R713–R724.

    Article  PubMed  CAS  Google Scholar 

  85. He, X. (2003). A Wnt–Wnt situation. Developmental Cell, 4(6), 791–797.

    Article  PubMed  CAS  Google Scholar 

  86. Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nature Genetics, 22(4), 361–365.

    Article  PubMed  CAS  Google Scholar 

  87. Sinner, D., Rankin, S., Lee, M., & Zorn, A. M. (2004). Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development, 131(13), 3069–3080.

    Article  PubMed  CAS  Google Scholar 

  88. Schneider, V. A., & Mercola, M. (2001). Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes & Development, 15(3), 304–315.

    Article  CAS  Google Scholar 

  89. Lickert, H., Kutsch, S., Kanzler, B., Tamai, Y., Taketo, M. M., & Kemler, R. (2002). Formation of multiple hearts in mice following deletion of beta-catenin in the embryonic endoderm. Developmental Cell, 3(2), 171–181.

    Article  PubMed  CAS  Google Scholar 

  90. Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.

    Article  PubMed  CAS  Google Scholar 

  91. Gregorieff, A., Grosschedl, R., & Clevers, H. (2004). Hindgut defects and transformation of the gastro-intestinal tract in Tcf4(−/−)/Tcf1(−/−) embryos. EMBO Journal, 23(8), 1825–1833.

    Article  PubMed  CAS  Google Scholar 

  92. Miyazawa, K., Shinozaki, M., Hara, T., Furuya, T., & Miyazono, K. (2002). Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells, 7(12), 1191–1204.

    Article  PubMed  CAS  Google Scholar 

  93. Poulain, M., Furthauer, M., Thisse, B., Thisse, C., & Lepage, T. (2006). Zebrafish endoderm formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development, 133(11), 2189–2200.

    Article  PubMed  CAS  Google Scholar 

  94. Sasai, Y., Lu, B., Piccolo, S., & De Robertis, E. M. (1996). Endoderm induction by the organizer-secreted factors chordin and noggin in Xenopus animal caps. EMBO Journal, 15(17), 4547–4555.

    PubMed  CAS  Google Scholar 

  95. Zimmerman, L. B., Jesus-Escobar, J. M., & Harland, R. M. (1996). The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell, 86(4), 599–606.

    Article  PubMed  CAS  Google Scholar 

  96. Winnier, G., Blessing, M., Labosky, P. A., & Hogan, B. L. (1995). Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes & Development, 9(17), 2105–2116.

    Article  CAS  Google Scholar 

  97. Mishina, Y., Suzuki, A., Ueno, N., & Behringer, R. R. (1995). Bmpr encodes a type I bone morphogenetic protein receptor that is essential for gastrulation during mouse embryogenesis. Genes & Development, 9(24), 3027–3037.

    Article  CAS  Google Scholar 

  98. Shiraki, N., Yoshida, T., Araki, K., Umezawa, A., Higuchi, Y., Goto, H., et al. (2008). Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells, 26(4), 874–885.

    Article  PubMed  CAS  Google Scholar 

  99. Sumi, T., Tsuneyoshi, N., Nakatsuji, N., & Suemori, H. (2008). Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development, 135(17), 2969–2979.

    Article  PubMed  CAS  Google Scholar 

  100. Rust, W. L., Sadasivam, A., & Dunn, N. R. (2006). Three-dimensional extracellular matrix stimulates gastrulation-like events in human embryoid bodies. Stem Cells Dev, 15(6), 889–904.

    Article  PubMed  CAS  Google Scholar 

  101. Yamaguchi, T. P., Harpal, K., Henkemeyer, M., & Rossant, J. (1994). fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes & Development, 8(24), 3032–3044.

    Article  CAS  Google Scholar 

  102. Deng, C. X., Wynshaw-Boris, A., Shen, M. M., Daugherty, C., Ornitz, D. M., & Leder, P. (1994). Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes & Development, 8(24), 3045–3057.

    Article  CAS  Google Scholar 

  103. Ciruna, B., & Rossant, J. (2001). FGF signaling regulates mesoderm cell fate specification and morphogenetic movement at the primitive streak. Dev Cell, 1(1), 37–49.

    Article  PubMed  CAS  Google Scholar 

  104. Sun, X., Meyers, E. N., Lewandoski, M., & Martin, G. R. (1999). Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes & Development, 13(14), 1834–1846.

    Article  CAS  Google Scholar 

  105. Meyers, E. N., Lewandoski, M., & Martin, G. R. (1998). An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genetics, 18(2), 136–141.

    Article  PubMed  CAS  Google Scholar 

  106. Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K., & Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5082–5087.

    Article  PubMed  CAS  Google Scholar 

  107. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M., & Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science, 267(5195), 246–249.

    Article  PubMed  CAS  Google Scholar 

  108. Goldin, S. N., & Papaioannou, V. E. (2003). Paracrine action of FGF4 during periimplantation development maintains trophectoderm and primitive endoderm. Genesis, 36(1), 40–47.

    Article  PubMed  CAS  Google Scholar 

  109. Niswander, L., & Martin, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114(3), 755–768.

    PubMed  CAS  Google Scholar 

  110. Kim, S. K., & Melton, D. A. (1998). Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 95(22), 13036–13041.

    Article  PubMed  CAS  Google Scholar 

  111. Incardona, J. P., Gaffield, W., Kapur, R. P., & Roelink, H. (1998). The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development, 125(18), 3553–3562.

    PubMed  CAS  Google Scholar 

  112. Ramalho-Santos, M., Melton, D. A., & McMahon, A. P. (2000). Hedgehog signals regulate multiple aspects of gastrointestinal development. Development, 127(12), 2763–2772.

    PubMed  CAS  Google Scholar 

  113. Apelqvist, A., Ahlgren, U., & Edlund, H. (1997). Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Current Biology, 7(10), 801–804.

    Article  PubMed  CAS  Google Scholar 

  114. Thomas, M. K., Rastalsky, N., Lee, J. H., & Habener, J. F. (2000). Hedgehog signaling regulation of insulin production by pancreatic beta-cells. Diabetes, 49(12), 2039–2047.

    Article  PubMed  CAS  Google Scholar 

  115. Brickell, P. M., & Tickle, C. (1989). Morphogens in chick limb development. Bioessays, 11(5), 145–149.

    Article  PubMed  CAS  Google Scholar 

  116. Balmer, J. E., & Blomhoff, R. (2002). Gene expression regulation by retinoic acid. Journal of Lipid Research, 43(11), 1773–1808.

    Article  PubMed  CAS  Google Scholar 

  117. Fukui, A., & Asashima, M. (1994). Control of cell differentiation and morphogenesis in amphibian development. International Journal of Developmental Biology, 38(2), 257–266.

    PubMed  CAS  Google Scholar 

  118. Rohwedel, J., Guan, K., & Wobus, A. M. (1999). Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs, 165(3–4), 190–202.

    Article  PubMed  CAS  Google Scholar 

  119. Chen, Y., Pan, F. C., Brandes, N., Afelik, S., Solter, M., & Pieler, T. (2004). Retinoic acid signaling is essential for pancreas development and promotes endocrine at the expense of exocrine cell differentiation in Xenopus. Developments in Biologicals, 271(1), 144–160.

    Article  CAS  Google Scholar 

  120. Penny, C., & Kramer, B. (2000). The effect of retinoic acid on the proportion of insulin cells in the developing chick pancreas. In Vitro Cellular & Developmental Biology. Animal, 36(1), 14–18.

    Article  CAS  Google Scholar 

  121. Stafford, D., & Prince, V. E. (2002). Retinoic acid signaling is required for a critical early step in zebrafish pancreatic development. Current Biology, 12(14), 1215–1220.

    Article  PubMed  CAS  Google Scholar 

  122. Stafford, D., White, R. J., Kinkel, M. D., Linville, A., Schilling, T. F., & Prince, V. E. (2006). Retinoids signal directly to zebrafish endoderm to specify insulin-expressing beta-cells. Development, 133(5), 949–956.

    Article  PubMed  CAS  Google Scholar 

  123. Kobayashi, H., Spilde, T. L., Bhatia, A. M., Buckingham, R. B., Hembree, M. J., Prasadan, K., et al. (2002). Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial–mesenchymal interactions. Gastroenterology, 123(4), 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  124. Durston, A. J., Timmermans, J. P., Hage, W. J., Hendriks, H. F., de Vries, N. J., Heideveld, M., et al. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature, 340(6229), 140–144.

    Article  PubMed  CAS  Google Scholar 

  125. Okabayashi, K., & Asashima, M. (2003). Tissue generation from amphibian animal caps. Current Opinion in Genetics & Development, 13(5), 502–507.

    Article  CAS  Google Scholar 

  126. Rossi, J. M., Dunn, N. R., Hogan, B. L., & Zaret, K. S. (2001). Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes & Development, 15(15), 1998–2009.

    Article  CAS  Google Scholar 

  127. Jiang, J., Au, M., Lu, K., Eshpeter, A., Korbutt, G., Fisk, G., et al. (2007). Generation of insulin-producing islet-like clusters from human embryonic stem cells. Stem Cells, 25(8), 1940–1953.

    Article  PubMed  CAS  Google Scholar 

  128. Philippe, J., Drucker, D. J., Chick, W. L., & Habener, J. F. (1987). Transcriptional regulation of genes encoding insulin, glucagon, and angiotensinogen by sodium butyrate in a rat islet cell line. Molecular and Cellular Biology, 7(1), 560–563.

    PubMed  CAS  Google Scholar 

  129. Goicoa, S., Alvarez, S., Ricordi, C., Inverardi, L., & Dominguez-Bendala, J. (2006). Sodium butyrate activates genes of early pancreatic development in embryonic stem cells. Cloning Stem Cells, 8(3), 140–149.

    Article  PubMed  CAS  Google Scholar 

  130. Soria, B. (2001). In-vitro differentiation of pancreatic beta-cells. Differentiation, 68(4–5), 205–219.

    Article  PubMed  CAS  Google Scholar 

  131. Mashima, H., Shibata, H., Mine, T., & Kojima, I. (1996). Formation of insulin-producing cells from pancreatic acinar AR42J cells by hepatocyte growth factor. Endocrinology, 137(9), 3969–3976.

    Article  PubMed  CAS  Google Scholar 

  132. Demeterco, C., Beattie, G. M., Dib, S. A., Lopez, A. D., & Hayek, A. (2000). A role for activin A and betacellulin in human fetal pancreatic cell differentiation and growth. Journal of Clinical Endocrinology and Metabolism, 85(10), 3892–3897.

    Article  PubMed  CAS  Google Scholar 

  133. Cho, Y. M., Lim, J. M., Yoo, D. H., Kim, J. H., Chung, S. S., Park, S. G., et al. (2008). Betacellulin and nicotinamide sustain PDX1 expression and induce pancreatic beta-cell differentiation in human embryonic stem cells. Biochemical and Biophysical Research Communications, 366(1), 129–134.

    Article  PubMed  CAS  Google Scholar 

  134. Bhushan, A., Itoh, N., Kato, S., Thiery, J. P., Czernichow, P., Bellusci, S., et al. (2001). Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development, 128(24), 5109–5117.

    PubMed  CAS  Google Scholar 

  135. Norgaard, G. A., Jensen, J. N., & Jensen, J. (2003). FGF10 signaling maintains the pancreatic progenitor cell state revealing a novel role of Notch in organ development. Developments in Biologicals, 264(2), 323–338.

    Article  CAS  Google Scholar 

  136. Hart, A., Papadopoulou, S., & Edlund, H. (2003). Fgf10 maintains notch activation, stimulates proliferation, and blocks differentiation of pancreatic epithelial cells. Developmental Dynamics, 228(2), 185–193.

    Article  PubMed  CAS  Google Scholar 

  137. Ye, F., Duvillie, B., & Scharfmann, R. (2005). Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia, 48(2), 277–281.

    Article  PubMed  CAS  Google Scholar 

  138. Movassat, J., Beattie, G. M., Lopez, A. D., Portha, B., & Hayek, A. (2003). Keratinocyte growth factor and beta-cell differentiation in human fetal pancreatic endocrine precursor cells. Diabetologia, 46(6), 822–829.

    Article  PubMed  CAS  Google Scholar 

  139. Miralles, F., Czernichow, P., Ozaki, K., Itoh, N., & Scharfmann, R. (1999). Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6267–6272.

    Article  PubMed  CAS  Google Scholar 

  140. Skoudy, A., Rovira, M., Savatier, P., Martin, F., Leon-Quinto, T., Soria, B., et al. (2004). Transforming growth factor (TGF)beta, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochemical Journal, 379(Pt 3), 749–756.

    Article  PubMed  CAS  Google Scholar 

  141. Garcia-Ocana, A., Vasavada, R. C., Cebrian, A., Reddy, V., Takane, K. K., Lopez-Talavera, J. C., et al. (2001). Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes, 50(12), 2752–2762.

    Article  PubMed  CAS  Google Scholar 

  142. Otonkoski, T., Cirulli, V., Beattie, M., Mally, M. I., Soto, G., Rubin, J. S., et al. (1996). A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology, 137(7), 3131–3139.

    Article  PubMed  CAS  Google Scholar 

  143. Lammert, E., Cleaver, O., & Melton, D. (2003). Role of endothelial cells in early pancreas and liver development. Mechanisms of Development, 120(1), 59–64.

    Article  PubMed  CAS  Google Scholar 

  144. Lammert, E., Cleaver, O., & Melton, D. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science, 294(5542), 564–567.

    Article  PubMed  CAS  Google Scholar 

  145. Nikolova, G., Jabs, N., Konstantinova, I., Domogatskaya, A., Tryggvason, K., Sorokin, L., et al. (2006). The vascular basement membrane: A niche for insulin gene expression and Beta cell proliferation. Developmental Cell, 10(3), 397–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to all previous and present members of the lab, who participated in pancreatic differentiation experiments using mES cells. Financial support of projects by the German Research Foundation (DFG), European Union (Fun GenES) and the Federal Ministry of Science and Research (BMBF) to A.M.W. are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Wobus.

Additional information

Sabine Sulzbacher and Insa S. Schroeder contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sulzbacher, S., Schroeder, I.S., Truong, T.T. et al. Activin A-Induced Differentiation of Embryonic Stem Cells into Endoderm and Pancreatic Progenitors—The Influence of Differentiation Factors and Culture Conditions. Stem Cell Rev and Rep 5, 159–173 (2009). https://doi.org/10.1007/s12015-009-9061-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-009-9061-5

Keywords

Navigation