Skip to main content
Log in

SIRT3: A Potential Target of Different Types of Osteoporosis

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) is a common age-related disease. OP is mainly a decrease in bone density and mass caused by the destruction of bone microstructure, which leads to an increase in bone fragility. SIRT3 is a mitochondrial deacetylase that plays critical roles in mitochondrial homeostasis, metabolic regulation, gene transcription, stress response, and gene stability. Studies have shown that the higher expression levels of SIRT3 are associated with decreased levels of oxidative stress in the body and may play important roles in the prevention of age-related diseases. SIRTs can enhance the osteogenic potential and osteoblastic activity of bone marrow mesenchymal stromal cells not only by enhancing PGC-1α, FOXO3, SOD2, and oxidative phosphorylation, but also by anti-aging and reducing mitochondrial autophagy. SIRT3 is able to upregulate antioxidant enzymes to exert an inhibitory effect on osteoclasts, however, it has been shown that the inflammatory cascade response can in turn increase SIRT3 and inhibit osteoclast differentiation through the AMPK-PGC-1β pathway. SIRT3 plays an important role in different types of osteoporosis by affecting osteoblasts, osteoclasts, and bone marrow mesenchymal cells. In this review, we discuss the classification and physiological functions of SIRTs, the effects of SIRT3 on OCs osteoblasts, and BMSCs, and the roles and mechanisms of SIRT3 in different types of OP, such as diabetic OP, glucocorticoid-induced OP, postmenopausal OP, and senile OP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Słupski, W., Jawień, P., & Nowak, B. (2021). Botanicals in postmenopausal osteoporosis. Nutrients, 13(5), 1609. https://doi.org/10.3390/nu13051609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnston, C. B., & Dagar, M. (2020). Osteoporosis in older adults. The Medical Clinics of North America, 104(5), 873–884. https://doi.org/10.1016/j.mcna.2020.06.004.

    Article  PubMed  Google Scholar 

  3. He, J., Xu, S., Zhang, B., Xiao, C., Chen, Z., Si, F., Fu, J., Lin, X., Zheng, G., Yu, G., & Chen, J. (2020). Gut microbiota and metabolite alterations associated with reduced bone mineral density or bone metabolic indexes in postmenopausal osteoporosis. Aging, 12(9), 8583–8604. https://doi.org/10.18632/aging.103168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Noh, J. Y., Yang, Y., & Jung, H. (2020). Molecular mechanisms and emerging therapeutics for osteoporosis. International Journal of Molecular Sciences, 21(20), 7623. https://doi.org/10.3390/ijms21207623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anam, A. K., & Insogna, K. (2021). Update on osteoporosis screening and management. The Medical Clinics of North America, 105(6), 1117–1134. https://doi.org/10.1016/j.mcna.2021.05.016.

    Article  PubMed  Google Scholar 

  6. Sun, K., Jing, X., Guo, J., Yao, X., & Guo, F. (2021). Mitophagy in degenerative joint diseases. Autophagy, 17(9), 2082–2092. https://doi.org/10.1080/15548627.2020.1822097.

    Article  CAS  PubMed  Google Scholar 

  7. Singh, C. K., Chhabra, G., Ndiaye, M. A., Garcia-Peterson, L. M., Mack, N. J., & Ahmad, N. (2018). The role of sirtuins in antioxidant and redox signaling. Antioxidants & Redox Signaling, 28(8), 643–661. https://doi.org/10.1089/ars.2017.7290.

    Article  CAS  Google Scholar 

  8. Jin, W., Li, C., Yang, S., Song, S., Hou, W., Song, Y., & Du, Q. (2023). Hypolipidemic effect and molecular mechanism of ginsenosides: A review based on oxidative stress. Frontiers in Pharmacology, 14, 1166898. https://doi.org/10.3389/fphar.2023.1166898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Golob, A. L., & Laya, M. B. (2015). Osteoporosis: Screening, prevention, and management. The Medical Clinics of North America, 99(3), 587–606. https://doi.org/10.1016/j.mcna.2015.01.010.

    Article  PubMed  Google Scholar 

  10. Awasthi, H., Mani, D., Singh, D., & Gupta, A. (2018). The underlying pathophysiology and therapeutic approaches for osteoporosis. Medicinal Research Reviews, 38(6), 2024–2057. https://doi.org/10.1002/med.21504.

    Article  PubMed  Google Scholar 

  11. Arceo-Mendoza, R. M., & Camacho, P. M. (2021). Postmenopausal osteoporosis: Latest guidelines. Endocrinology and Metabolism Clinics of North America, 50(2), 167–178. https://doi.org/10.1016/j.ecl.2021.03.009.

    Article  PubMed  Google Scholar 

  12. Li, J., Chen, X., Lu, L., & Yu, X. (2020). The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine & Growth Factor Reviews, 52, 88–98. https://doi.org/10.1016/j.cytogfr.2020.02.003.

    Article  CAS  Google Scholar 

  13. Cheng, C. H., Chen, L. R., & Chen, K. H. (2022). Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. International Journal of Molecular Sciences, 23(3), 1376. https://doi.org/10.3390/ijms23031376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Manolagas, S. C. (2010). From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocrine Reviews, 31(3), 266–300. https://doi.org/10.1210/er.2009-0024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y., Wu, Q., Wang, Y., Li, L., Bu, H., & Bao, J. (2017). Senescence of mesenchymal stem cells (review). International Journal of Molecular Medicine, 39(4), 775–782. https://doi.org/10.3892/ijmm.2017.2912.

    Article  CAS  PubMed  Google Scholar 

  16. Zou, Z., Liu, W., Cao, L., Liu, Y., He, T., Peng, S., & Shuai, C. (2020). Advances in the occurrence and biotherapy of osteoporosis. Biochemical Society Transactions, 48(4), 1623–1636. https://doi.org/10.1042/BST20200005.

    Article  CAS  PubMed  Google Scholar 

  17. Herath, M., Langdahl, B., Ebeling, P. R., & Milat, F. (2022). Challenges in the diagnosis and management of glucocorticoid-induced osteoporosis in younger and older adults. Clinical Endocrinology, 96(4), 460–474. https://doi.org/10.1111/cen.14637.

    Article  PubMed  Google Scholar 

  18. Honaker, K., Tanabe, M., Kawate, H., Nawata, H., & Takayanagi, R. (2005). Glucocorticoid suppresses the canonical Wnt signal in cultured human osteoblasts. Biochemical and Biophysical Research Communications, 329(1), 177–181. https://doi.org/10.1016/j.bbrc.2005.01.117.

    Article  CAS  Google Scholar 

  19. Cipriani, C., Colangelo, L., Santori, R., Renella, M., Mastrantonio, M., Minisola, S., & Pepe, J. (2020). The interplay between bone and glucose metabolism. Frontiers in Endocrinology, 11, 122. https://doi.org/10.3389/fendo.2020.00122.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tanaka, K., Yamaguchi, T., Kanazawa, I., & Sugimoto, T. (2015). Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochemical and Biophysical Research Communications, 461(2), 193–199. https://doi.org/10.1016/j.bbrc.2015.02.091.

    Article  CAS  PubMed  Google Scholar 

  21. Yi, S. J., & Kim, K. (2020). New insights into the role of histone changes in aging. International Journal of Molecular Sciences, 21(21), 8241. https://doi.org/10.3390/ijms21218241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. García-Giménez, J. L., Garcés, C., Romá-Mateo, C., & Pallardó, F. V. (2021). Oxidative stress-mediated alterations in histone post-translational modifications. Free Radical Biology & Medicine, 170, 6–18. https://doi.org/10.1016/j.freeradbiomed.2021.02.027.

    Article  CAS  Google Scholar 

  23. Zhang, T., Cooper, S., & Brockdorff, N. (2015). The interplay of histone modifications—writers that read. EMBO Reports, 16(11), 1467–1481. https://doi.org/10.15252/embr.201540945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shen, Y., Wei, W., & Zhou, D. X. (2015). Histone acetylation enzymes coordinate metabolism and gene expression. Trends in Plant Science, 20(10), 614–621. https://doi.org/10.1016/j.tplants.2015.07.005.

    Article  CAS  PubMed  Google Scholar 

  25. Yang, K., Pei, L., Zhou, S., Tao, L., & Zhu, Y. (2021). Metformin attenuates H2O2-induced osteoblast apoptosis by regulating SIRT3 via the PI3K/AKT pathway. Experimental and Therapeutic Medicine, 22(5), 1316. https://doi.org/10.3892/etm.2021.10751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Diao, Z., Ji, Q., & Wu, Z., et al. (2021). SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Research, 49(8), 4203–4219. https://doi.org/10.1093/nar/gkab161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, H. S., Patel, K., & Muldoon-Jacobs, K., et al. (2010). SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell, 17(1), 41–52. https://doi.org/10.1016/j.ccr.2009.11.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, J., Xiang, H., Liu, J., Chen, Y., He, R. R., & Liu, B. (2020). Mitochondrial sirtuin 3: New emerging biological function and therapeutic target. Theranostics, 10(18), 8315–8342. https://doi.org/10.7150/thno.45922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng, Y., Ren, X., & Gowda, A. S., et al. (2013). Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress. Cell Death & Disease, 4(7), e731. https://doi.org/10.1038/cddis.2013.254.

    Article  CAS  Google Scholar 

  30. Liu, J., Li, D., Zhang, T., Tong, Q., Ye, R. D., & Lin, L. (2017). SIRT3 protects hepatocytes from oxidative injury by enhancing ROS scavenging and mitochondrial integrity. Cell Death & Disease, 8(10), e3158. https://doi.org/10.1038/cddis.2017.564.

    Article  CAS  Google Scholar 

  31. Gao, J. M., Li, R., Zhang, L., Jia, L. L., Ying, X. X., Dou, D. Q., Li, J. C., & Li, H. B. (2013). Cuscuta chinensis seeds water extraction protecting murine osteoblastic MC3T3-E1 cells against tertiary butyl hydroperoxide induced injury. Journal of Ethnopharmacology, 148(2), 587–595. https://doi.org/10.1016/j.jep.2013.05.005.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, Y., Jia, X., Cui, Y., Song, Y., Wang, S., Geng, Y., Li, R., Gao, W., & Fu, D. (2021). Sirt3-mediated mitophagy regulates AGEs-induced BMSCs senescence and senile osteoporosis. Redox Biology, 41, 101915. https://doi.org/10.1016/j.redox.2021.101915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, T. S., Jin, Y. B., & Kim, Y. S., et al. (2019). SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy, 15(8), 1356–1375. https://doi.org/10.1080/15548627.2019.1582743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li, R., Xin, T., Li, D., Wang, C., Zhu, H., & Zhou, H. (2018). Therapeutic effect of sirtuin 3 on ameliorating nonalcoholic fatty liver disease: The role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biology, 18, 229–243. https://doi.org/10.1016/j.redox.2018.07.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, T., Zhang, F., Peng, W., Wang, L., Zhang, J., Dong, W., Tian, X., Ye, C., Li, Y., & Gong, Y. (2022). Overexpression of NMNAT3 improves mitochondrial function and enhances antioxidative stress capacity of bone marrow mesenchymal stem cells via the NAD+-Sirt3 pathway. Bioscience Reports, 42(1), BSR20211005. https://doi.org/10.1042/BSR20211005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bugga, P., Alam, M. J., Kumar, R., Pal, S., Chattopadyay, N., & Banerjee, S. K. (2022). Sirt3 ameliorates mitochondrial dysfunction and oxidative stress through regulating mitochondrial biogenesis and dynamics in cardiomyoblast. Cellular Signalling, 94, 110309. https://doi.org/10.1016/j.cellsig.2022.110309.

    Article  CAS  PubMed  Google Scholar 

  37. Giralt, A., & Villarroya, F. (2012). SIRT3, a pivotal actor in mitochondrial functions: Metabolism, cell death and aging. The Biochemical Journal, 444(1), 1–10. https://doi.org/10.1042/BJ20120030.

    Article  CAS  PubMed  Google Scholar 

  38. Ding, Y., Yang, H., Wang, Y., Chen, J., Ji, Z., & Sun, H. (2017). Sirtuin 3 is required for osteogenic differentiation through maintenance of PGC-1ɑ-SOD2-mediated regulation of mitochondrial function. International Journal of Biological Sciences, 13(2), 254–264. https://doi.org/10.7150/ijbs.17053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, F. S., Wu, R. W., Chen, Y. S., Ko, J. Y., Jahr, H., & Lian, W. S. (2021). Biophysical modulation of the mitochondrial metabolism and redox in bone homeostasis and osteoporosis: How biophysics converts into bioenergetics. Antioxidants, 10(9), 1394. https://doi.org/10.3390/antiox10091394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao, J., Feng, Z., & Wang, X., et al. (2018). SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death and Differentiation, 25(2), 229–240. https://doi.org/10.1038/cdd.2017.144.

    Article  CAS  PubMed  Google Scholar 

  41. Zheng, K., Bai, J., & Li, N., et al. (2021). Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioactive Materials, 6(10), 3343–3357. https://doi.org/10.1016/j.bioactmat.2021.02.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhou, W., Liu, Y., & Shen, J., et al. (2019). Melatonin increases bone mass around the prostheses of OVX rats by ameliorating mitochondrial oxidative stress via the SIRT3/SOD2 signaling pathway. Oxidative Medicine and Cellular Longevity, 2019, 4019619. https://doi.org/10.1155/2019/4019619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiao, L., Lin, J., Chen, R., Huang, Y., Liu, Y., Bai, J., Ge, G., Shi, X., Chen, Y., Shi, J., Aiqing, L., Yang, H., Geng, D., & Wang, Z. (2020). Sustained release of melatonin from GelMA liposomes reduced osteoblast apoptosis and improved implant osseointegration in osteoporosis. Oxidative Medicine and Cellular Longevity, 2020, 6797154. https://doi.org/10.1155/2020/6797154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, Y., Yu, C., Shen, G., Li, G., Shen, J., Xu, Y., & Gong, J. (2015). Sirt3-MnSOD axis represses nicotine-induced mitochondrial oxidative stress and mtDNA damage in osteoblasts. Acta Biochimica et Biophysica Sinica, 47(4), 306–312. https://doi.org/10.1093/abbs/gmv013.

    Article  CAS  PubMed  Google Scholar 

  45. Wang, S., Yang, J., Lin, T., Huang, S., Ma, J., & Xu, X. (2020). Excessive production of mitochondrion‑derived reactive oxygen species induced by titanium ions leads to autophagic cell death of osteoblasts via the SIRT3/SOD2 pathway. Molecular Medicine Reports, 22(1), 257–264. https://doi.org/10.3892/mmr.2020.11094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, H., Lee, Y. D., Kim, H. J., Lee, Z. H., & Kim, H. H. (2017). SOD2 and Sirt3 control osteoclastogenesis by regulating mitochondrial ROS. Journal of Bone and Mineral Research, 32(2), 397–406. https://doi.org/10.1002/jbmr.2974.

    Article  CAS  PubMed  Google Scholar 

  47. Ling, W., Krager, K., Richardson, K. K., Warren, A. D., Ponte, F., Aykin-Burns, N., Manolagas, S. C., Almeida, M., & Kim, H. N. (2021). Mitochondrial Sirt3 contributes to the bone loss caused by aging or estrogen deficiency. JCI Insight, 6(10), e146728. https://doi.org/10.1172/jci.insight.146728.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li, Q., Wang, H., Zhang, J., Kong, A. P., Li, G., Lam, T. P., Cheng, J. C., & Lee, W. Y. (2021). Deletion of SIRT3 inhibits osteoclastogenesis and alleviates aging or estrogen deficiency-induced bone loss in female mice. Bone, 144, 115827. https://doi.org/10.1016/j.bone.2020.115827.

    Article  CAS  PubMed  Google Scholar 

  49. Ho, L., Wang, L., Roth, T. M., Pan, Y., Verdin, E. M., Hsiao, E. C., & Nissenson, R. A. (2017). Sirtuin-3 promotes adipogenesis, osteoclastogenesis, and bone loss in aging male mice. Endocrinology, 158(9), 2741–2753. https://doi.org/10.1210/en.2016-1739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, N., Li, X., Zheng, K., Bai, J., Zhang, W., Sun, H., Ge, G., Wang, W., Wang, Z., Gu, Y., Xue, Y., Xu, Y., Geng, D., & Zhou, J. (2021). Inhibition of Sirtuin 3 prevents titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK and JNK signaling. International Journal of Biological Sciences, 17(5), 1382–1394. https://doi.org/10.7150/ijbs.53992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Richardson, K. K., Ling, W., Krager, K., Fu, Q., Byrum, S. D., Pathak, R., Aykin-Burns, N., & Kim, H. N. (2022). Ionizing radiation activates mitochondrial function in osteoclasts and causes bone loss in young adult male mice. International Journal of Molecular Sciences, 23(2), 675. https://doi.org/10.3390/ijms23020675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huh, J. E., Shin, J. H., Jang, E. S., Park, S. J., Park, D. R., Ko, R., Seo, D. H., Kim, H. S., Lee, S. H., Choi, Y., Kim, H. S., & Lee, S. Y. (2016). Sirtuin 3 (SIRT3) maintains bone homeostasis by regulating AMPK-PGC-1β axis in mice. Scientific Reports, 6, 22511. https://doi.org/10.1038/srep22511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hu, S., & Wang, S. (2022). The role of SIRT3 in the osteoporosis. Frontiers in Endocrinology, 13, 893678. https://doi.org/10.3389/fendo.2022.893678.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Mazzotti, E., Teti, G., Falconi, M., Chiarini, F., Barboni, B., Mazzotti, A., & Muttini, A. (2019). Age-related alterations affecting the chondrogenic differentiation of synovial fluid mesenchymal stromal cells in an equine model. Cells, 8(10), 1116. https://doi.org/10.3390/cells8101116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ballard, A., Zeng, R., Zarei, A., Shao, C., Cox, L., Yan, H., Franco, A., Dorn, 2nd, G. W., Facci, R., & Deborah, J. V. (2020). The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+-NFATc1 axis. The Journal of Biological Chemistry, 295(19), 6629–6640. https://doi.org/10.1074/jbc.RA119.012023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walters, H. E., & Cox, L. S. (2018). mTORC inhibitors as broad-spectrum therapeutics for age-related diseases. International Journal of Molecular Sciences, 19(8), 2325. https://doi.org/10.3390/ijms19082325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Minhas, P. S., Liu, L., & Moon, P. K., et al. (2019). Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation. Nature Immunology, 20(1), 50–63. https://doi.org/10.1038/s41590-018-0255-3.

    Article  CAS  PubMed  Google Scholar 

  58. Bordag, N., Klie, S., Jürchott, K., Vierheller, J., Schiewe, H., Albrecht, V., Tonn, J. C., Schwartz, C., Schichor, C., & Selbig, J. (2015). Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects. Scientific Reports, 5, 15954. https://doi.org/10.1038/srep15954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, L., Li, Q., Yan, H., Jiao, G., Wang, H., Chi, H., Zhou, H., Chen, L., Shan, Y., & Chen, Y. (2020). Resveratrol protects osteoblasts against dexamethasone-induced cytotoxicity through activation of AMP-activated protein kinase. Drug Design, Development and Therapy, 14, 4451–4463. https://doi.org/10.2147/DDDT.S266502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, L., Wang, B. Z., Xie, J., Zhang, R. Y., Jin, C., Chen, W. K., Fang, K. H., Hong, C. X., Xu, T. H., Huang, C. B., Yang, L. & & Weng, S. J. (2021). Therapeutic effect of SIRT3 on glucocorticoid-induced osteonecrosis of the femoral head via intracellular oxidative suppression. Free Radical Biology & Medicine, 176, 228–240. https://doi.org/10.1016/j.freeradbiomed.2021.07.016.

    Article  CAS  Google Scholar 

  61. Suwanjang, W., Sirisuwat, C., Srisung, S., Isarankura-Na-Ayudhya, C., Pannengpetch, S., & Prachayasittikul, S. (2022). Protective efficacy of Spilanthes acmella murr. extracts and bioactive constituents in neuronal cell death. Rejuvenation Research, 25(1), 2–15. https://doi.org/10.1089/rej.2021.0002.

    Article  CAS  PubMed  Google Scholar 

  62. Huang, X., Shu, H., Ren, C., & Zhu, J. (2022). SIRT3 improves bone regeneration and rescues diabetic fracture healing by regulating oxidative stress. Biochemical and Biophysical Research Communications, 604, 109–115. https://doi.org/10.1016/j.bbrc.2022.03.001.

    Article  CAS  PubMed  Google Scholar 

  63. Kitada, M., Ogura, Y., Monno, I., & Koya, D. (2019). Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Frontiers in Endocrinology, 10, 187. https://doi.org/10.3389/fendo.2019.00187.

    Article  PubMed  PubMed Central  Google Scholar 

  64. An, Y., Zhang, H., Wang, C., Jiao, F., Xu, H., Wang, X., Luan, W., Ma, F., Ni, L., Tang, X., Liu, M., Guo, W., & Yu, L. (2019). Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB Journal, 33(11), 12515–12527. https://doi.org/10.1096/fj.201802805RR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, J., Zhang, Y., Gao, J., Li, T., Gan, X., & Yu, H. (2021). Sirtuin 3 deficiency exacerbates age-related periodontal disease. Journal of Periodontal Research, 56(6), 1163–1173. https://doi.org/10.1111/jre.12930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Qadir, A., Liang, S., Wu, Z., Chen, Z., Hu, L., & Qian, A. (2020). Senile osteoporosis: The involvement of differentiation and senescence of bone marrow stromal cells. International Journal of Molecular Sciences, 21(1), 349. https://doi.org/10.3390/ijms21010349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cheng, Y. Z., Yang, S. L., Wang, J. Y., Ye, M., Zhuo, X. Y., Wang, L. T., Chen, H., Zhang, H., & Yang, L. (2018). Irbesartan attenuates advanced glycation end products-mediated damage in diabetes-associated osteoporosis through the AGEs/RAGE pathway. Life Sciences, 205, 184–192. https://doi.org/10.1016/j.lfs.2018.04.042.

    Article  CAS  PubMed  Google Scholar 

  68. Cao, L., Zhou, S., Qiu, X., & Qiu, S. (2022). Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. FASEB Journal, 36(9), e22491. https://doi.org/10.1096/fj.202200608RR.

    Article  CAS  PubMed  Google Scholar 

  69. Li, H., Zhang, M., & Wang, Y., et al. (2022). Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food & Function, 13(18), 9576–9588. https://doi.org/10.1039/d2fo00772j.

    Article  CAS  Google Scholar 

  70. Jin, Z. H., Wang, S. F., & Liao, W. (2020). Zoledronic acid accelerates osteogenesis of bone marrow mesenchymal stem cells by attenuating oxidative stress via the SIRT3/SOD2 pathway and thus alleviates osteoporosis. European Review for Medical and Pharmacological Sciences, 24(4), 2095–2101. https://doi.org/10.26355/eurrev_202002_20389.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by National Natural Science Foundation of China (No. 81960155) and The First Hospital of Lanzhou University Fund (ldyyyn2020-01).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Binjing Pan wrote the main manuscript text and figures. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jingfang Liu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, B., Chen, C., Zhao, Y. et al. SIRT3: A Potential Target of Different Types of Osteoporosis. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01254-4

Keywords

Navigation