Skip to main content
Log in

Glutamine-mediated Modulation of XO/uric acid/NF-kB Signaling Pathway Ameliorates Intestinal I/R-induced Bacterial Translocation and Cardiorenal Inflammatory Injury

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

This study explored the effect of intestinal ischaemia/reperfusion (I/R) on cardiorenal tissues. The involvement of xanthine oxidase/uric acid/NF-kB signaling in intestinal I/R was also investigated. In addition, the possible protective effect of glutamine was also evaluated. Twenty-four male Wistar rats were acclimatized and then randomly assigned to four groups (n = 6); sham-operated, glutamine-treated rats (GLUT), I/R, and I/R + GLUT. The sham-operated rats were sham-operated and received 0.5 mL of distilled water, GLUT rats were sham-operated and had 1 g/kg b.w. of glutamine, I/R animals had an intestinal I/R procedure and received 0.5 mL of distilled water, and the I/R + GLUT rats had an intestinal I/R procedure and also received 1 g/kg b.w. of glutamine. Treatments were daily and per os. Glutamine attenuated intestinal I/R-induced rise in intestinal and cardiorenal activities of creatinine kinase and lactate dehydrogenase and lactate level. More so, glutamine alleviated I/R-induced rise in malondialdehyde, xanthine oxidase, uric acid, myeloperoxidase, NF-kB, TNF-α, IL-1β, caspase 3 activity, and DNA fragmentation. Furthermore, glutamine suppressed I/R-induced decline in GSH levels and SOD and catalase activities. Moreover, glutamine improved intestinal, cardiac, and renal histology in animals subjected to intestinal I/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Akhigbe, R. E., Aminat, B. O., Akhigbe, T. M., & Hamed, M. A. (2024). Glutamine alleviates I/R-induced intestinal injury and dysmotility via the downregulation of Xanthine Oxidase/Uric acid signaling and lactate generation in Wistar rats. Journal of Surgical Research, 295, 431–441.

    Article  CAS  PubMed  Google Scholar 

  2. Afolabi, A. O., Akhigbe, T. M., Odetayo, A. F., Anyogu, D. C., Hamed, M. A., & Akhigbe, R. E. (2022). Restoration of hepatic and intestinal integrity by Phyllanthus amarus is dependent on Bax/caspase 3 modulation in intestinal ischemia-/reperfusion-induced injury. Molecules, 27(16), 5073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Afolabi, O. A., Akhigbe, T. M., Akhigbe, R. E., Alabi, B. A., Gbolagun, O. T., Taiwo, M. E., Fakeye, O. O., & Yusuf, E. O. (2022). Methanolic Moringa oleifera leaf extract protects against epithelial barrier damage and enteric bacterial translocation in intestinal I/R: Possible role of caspase 3. Frontiers in Pharmacology, 13, 989023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang, Y., Du, Y., Le, W., Wang, K., Kieffer, N., & Zhang, J. (2011). Redox control of the survival of healthy and diseased cells. Antioxidants & Redox Signaling, 15, 2867–2908.

    Article  CAS  Google Scholar 

  5. Piantadosi, C. A. (2008). Carbon monoxide, reactive oxygen signaling, and oxidative stress. Free Radical Biology and Medicine, 45, 562–569.

    Article  CAS  PubMed  Google Scholar 

  6. Ray, P. D., Huang, B.-W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling., 24, 981–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vollmar, B., & Menger, M. D. (2011). Intestinal ischemia/reperfusion: microcirculatory pathology and functional consequences. Langenbecks Arch Surg, 396, 13–29.

    Article  PubMed  Google Scholar 

  8. Okudan, N., Belviranlı, M., Gökbel, H., Öz, M., & Kumak, A. (2013). Protective effects of curcumin supplementation on intestinal ischemia reperfusion injury. Phytomedicine, 20(10), 844–848.

    Article  CAS  PubMed  Google Scholar 

  9. Yurdakan, G., Tekin, I. O., Comert, M., Acikgoz, S., & Sipahi, E. Y. (2012). The presence of oxidized low-density lipoprotein and inducible nitric oxide synthase expression in renal damage after intestinal ischemia reperfusion. Kaohsiung Journal of Medical Science, 28, 16–22.

    Article  CAS  Google Scholar 

  10. Kazantzidou, D., Tsalis, K., & Vasiliadis, K., et al. (2010). Alanine-glutamine dipeptide pretreatment protects rat renal function from small intestine ischemia-reperfusion injury. Minerva Chir, 65, 515–525.

    CAS  PubMed  Google Scholar 

  11. Akhigbe, R. E., Hamed, M. A., & Aremu, A. O. (2021). HAART exacerbates testicular damage and impaired spermatogenesis in anti-Koch-treated rats via dysregulation of lactate transport and glutathione content. Reproductive Toxicology, 103, 96–107.

    Article  CAS  PubMed  Google Scholar 

  12. Kang, D. H., Park, S. K., Lee, I. K., & Johnson, R. J. (2005). Uric acid–induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. Journal of the American Society of Nephrology, 16(12), 3553–3562.

    Article  CAS  PubMed  Google Scholar 

  13. Raish, M., Ahmad, A., Ansari, M. A., Alkharfy, K. M., Aljenoobi, F. I., Jan, B. L., Al-Mohizea, A. M., Khan, A., & Ali, N. (2018). Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. International Journal of Biological Macromolecules, 111, 193–199.

    Article  CAS  PubMed  Google Scholar 

  14. Hamed, M. A., Akhigbe, T. M., Akhigbe, R. E., Aremu, A. O., Oyedokun, P. A., Gbadamosi, J. A., Anifowose, P. E., Adewole, M. A., Aboyeji, O. O., Yisau, H. O., & Tajudeen, G. O. (2022). Glutamine restores testicular glutathione-dependent antioxidant defense and upregulates NO/cGMP signaling in sleep deprivation-induced reproductive dysfunction in rats. Biomedicine & Pharmacotherapy, 148, 112765.

    Article  CAS  Google Scholar 

  15. Nur, E., Verwijs, M., de Waart, D. R., Schnog, J. J., Otten, H. M., Brandjes, D. P., Biemond, B. J., & Elferink, R. P., CURAMA Study Group. (2011). Increased efflux of oxidized glutathione (GSSG) causes glutathione depletion and potentially diminishes antioxidant defense in sickle erythrocytes. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1812(11), 1412–1417.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu, C. J., McArdle, A. H., Brown, R., Scott, H. J., & Gurd, F. N. (1970). Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal. Archives of Surgery, 101, 478–483.

    Article  CAS  PubMed  Google Scholar 

  17. Beutler, E., Duron, O., & Kelly, B. M. (1963). Improved method for the determination of blood glutathione. The Journal of Laboratory and Clinical Medicine, 61, 882–888.

    CAS  PubMed  Google Scholar 

  18. Fridovich, I., & Misra, H. P. (1972). The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.

    Article  PubMed  Google Scholar 

  19. Euler, H. V., & Josephson, K. (1972). Uber katalase. European Journal of Organic Chemistry, 452, 158–181.

    Google Scholar 

  20. Perandones, C. E., Illera, V. A., Peckham, D., Stunz, L. L., & Ashman, R. F. (1993). Regulation of apoptosis in vitro in mature murine spleen T cells. Journal of Immunology, 151(7), 3521–3529.

    Article  CAS  Google Scholar 

  21. Hu X., Ma R., Lu J., Zhang K., Xu W., Jiang H., Da Y. IL–23 promotes myocardial I/ R injury by increasing the inflammatory responses and oxidative stress reactions. Cellular Physiology and Biochemistry 206; 38: 2163–2172

  22. Yang, S.-H., & Liu, R. (2016). For the pursuit of oxygen and carbon dioxide channels in mitochondria. Medical Gas Research, 6, 237–238.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ezraty, B., Gennaris, A., Barras, F., & Collet, J. –F. (2017). Oxidative stress, protein damage and repair in bacteria. Nature Reviews Microbiology, 15, 385.

    Article  CAS  PubMed  Google Scholar 

  24. Oyedokun, P. A., Akhigbe, R. E., Ajayi, L. O., & Ajayi, A. F. (2023 Apr). Impact of hypoxia on male reproductive functions. Molecular and Cellular Biochemistry, 478(4), 875–885.

    Article  CAS  PubMed  Google Scholar 

  25. Biswas, R., & Bagchi A. (2016). NFkB pathway and inhibition: an overview. Computational Molecular Biology, (1), 6.

  26. Barnes, P. J., & Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine, 336, 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  27. Baldwin, Jr, A. S. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. The Annual Review of Immunology, 14, 649–683.

    Article  CAS  PubMed  Google Scholar 

  28. Clarysse, M., Accarie, A., Farré, R., Canovai, E., Monbaliu, D., Gunst, J., De Hertogh, G., Vanuytsel, T., Pirenne, J., & Ceulemans, L. J. (2023). Protective effect of oxygen and isoflurane in rodent model of intestinal ischemia-reperfusion injury. International Journal of Molecular Sciences, 24(3), 2587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, R., Zeng, Z., & Zhang, Y.-Y., et al. (2020). Ischemic postconditioning attenuates acute kidney injury following intestinal ischemiareperfusion through Nrf2-regulated autophagy, anti-oxidation, and anti-inflammation in mice. The FASEB Journal, 34, 8887–8901.

    Article  CAS  PubMed  Google Scholar 

  30. Akhigbe, R. E., Ajayi, L. O., Adelakun, A. A., Olorunnisola, O. S., & Ajayi, A. F. (2020). Codeine-induced hepatic injury is via oxido-inflammatory damage and caspase-3-mediated apoptosis. Molecular Biology Reports, 47, 9521–9530.

    Article  CAS  PubMed  Google Scholar 

  31. Wallach, D., Varfolomeev, E. E., Malinin, N. L., Goltsev, Y. V., Kovalenko, A. V., & Boldin, M. P. (1999). Tumor necrosis factor receptor and Fas signaling mechanisms. The Annual Review of Immunology, 17, 331–367.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan, J. (1997). Transducing signals of life and death. Current Opinion in Cell Biology, 9, 247–251.

    Article  CAS  PubMed  Google Scholar 

  33. Reed, J. C. (1997). Cytochrome c: can’t live with it; can’t live without it. Cell, 91, 559–562.

    Article  CAS  PubMed  Google Scholar 

  34. Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  35. Elmore, S. (2007). Apoptosis: A review of programmed cell death. Toxicologic Pathology, 35, 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amini, N., Maleki, M., & Badavi, M. (2022). Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review. Avicenna Journal of Phytomedicine, 12(4), 357.

    PubMed  PubMed Central  Google Scholar 

  37. Amini, N., Sarkaki, A., Dianat, M., Mard, S. A., Ahangarpour, A., & Badavi, M. (2019). Protective effects of naringin and trimetazidine on remote effect of acute renal injury on oxidative stress and myocardial injury through Nrf-2 regulation. Pharmacological Reports, 71(6), 1059–1066.

    Article  PubMed  Google Scholar 

  38. Chiu, Y. W., Lee, C. H., & Lo, H. C. (2024). Oral post-treatment supplementation with a combination of glutamine, citrulline, and antioxidant vitamins additively mitigates jejunal damage, oxidative stress, and inflammation in rats with intestinal ischemia and reperfusion. Plos One, 19(2), e0298334 Feb 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the staff members of The Brainwill Laboratory, Osogbo, Osun State, Nigeria and The Reprodutcive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osun State, Nigeria, for their technical support.

Author contributions

Conceptualization and design: MAH and REA. Data curation: MAH, TMA, and REA. Funding acquisition: MAH, OOA, OIO, TMA, FDF, OCA, TFO, OSA, IAO, and REA. Investigation: MAH, OOA, OIO, TMA, FDF, OCA, TFO, OSA, IAO, and REA. Methodology: REA. Project administration: MAH, OOA, OIO, TMA, FDF, OCA, TFO, OSA, IAO, and REA. Supervision: MAH and REA. Validation: MAH, TMA, and REA. Writing-original draft: TMA and REA. Writing-review and editing and final approval: MAH, OOA, OIO, TMA, FDF, OCA, TFO, OSA, IAO, and REA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Eghoghosoa Akhigbe.

Ethics declarations

Conflict of interest

The authors report no competing interests.

Ethical approval

The study was approved by the institution’s Ethical Review Committee.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, M.A., Adegboyega, O.O., Ojo, O.I. et al. Glutamine-mediated Modulation of XO/uric acid/NF-kB Signaling Pathway Ameliorates Intestinal I/R-induced Bacterial Translocation and Cardiorenal Inflammatory Injury. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01252-6

Keywords

Navigation