Skip to main content
Log in

Galanin enhanced insulin-mediated intracellular signaling by regulating the stability of membrane-localized insulin/IR

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Previous studies have shown that insulin has the important regulatory effect on the intestinal tract. However, until now, the biological properties of insulin on intestinal cell has not been revealed. Therefore, in the current research, we first studied the cell characteristics and signaling profiles of insulin in the intestinal cell model, and found that insulin can be internalized into the cytoplasm in a time-dependent manner. After internalization, insulin transported into different type of endosomes. More importantly, we explored the effect of galanin on insulin-mediated signaling pathways (galanin is a polypeptide composed of 29 amino acid residues, galanin is widely distributed in the central and peripheral nervous system and has a variety of biological activities), and found that galanin can increase insulin sensitivity by regulating insulin receptor (IR)-mediated signal transduction pathways. We further study the potential molecular mechanism by which galanin enhances insulin sensitivity, and found that galanin could increase the time of insulin acting on the cell membrane. Further experiments showed that galanin could stabilize the membrane-localized insulin/IR, which may be an important new potential mechanism by which galanin improves the biological activity of insulin. This study laid the foundation for exploring the relationship between galanin and insulin sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stenvers, D. J., Scheer, F. A., Schrauwen, P., la Fleur, S. E., & Klabee, A. (2019). Circadian clocks and insulin resistance. Nature Reviews Endocrinology, 15, 75–89.

    Article  PubMed  Google Scholar 

  2. Ziegler, T. R., Almahfouz, A., Pedrini, M. T., & Smith, R. J. (1995). A comparison of rat small intestinal insulin and igf-i receptors during fasting and refeeding. Endocrinology, 136, 5148–5154.

    Article  CAS  PubMed  Google Scholar 

  3. Czech, M. P. (2020). Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Molecular Metabolism, 34, 27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazarati, A. M. (2004). Galanin and galanin receptors in epilepsy. Neuropeptides, 38, 331–343.

    Article  CAS  PubMed  Google Scholar 

  5. Mitsukawa, K., Lu, X., & Bartfai, T. (2008). Galanin, galanin receptors and drug targets. Experientia Supplementum, 102, 7.

    Article  Google Scholar 

  6. He, B., Shi, M., Zhang, L., Li, G., Zhang, L., Shao, H., & Sui, Y. (2011). Beneficial effect of galanin on insulin sensitivity in muscle of type 2 diabetic rats. Physiology & Behavior, 103, 284–289.

    Article  CAS  Google Scholar 

  7. Tang, G., Wang, Y., Park, S., Bajpayee, N. S., Vi, D., Nagaoka, Y., & Jiang, M. (2012). Go2 G protein mediates galanin inhibitory effects on insulin release from pancreatic β cells. Proceedings of the National Academy of Sciences USA, 109, 2636–2641.

    Article  CAS  Google Scholar 

  8. Kootte, R. S., Levin, E., Salojärvi, J., Smits, L. P., Hartstra, A. V., Udayappan, S. D., & Nieuwdorp, M. (2017). Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metabolism, 26, 611–619.

    Article  CAS  PubMed  Google Scholar 

  9. Kim, K. S., Kwag, D., Hwang, H., Lee, S. & Bae, E. S. (2018). Immense insulin intestinal uptake and lymphatic transportusing bile acid conjugated partially uncapped liposome. Molecular Pharmaceutics, 15, 4756–4763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Argilés, M., Zegrí, A., Arbós, J., García, C., & López-Soriano, F. J. (1992). The role of insulin in the intestinal absorption of glucose in the rat. International Journal of Biochemistry, 24(4), 631–636.

    Article  Google Scholar 

  11. Sukhotnik, I., Shehadeh, N., Shamir, R., Bejar, J., Bernshteyn, A., & Mogilner, J. G. (2005). Oral insulin enhances intestinal regrowth following massive small bowel resection in rat. Digestive Diseases & Sciences, 50(12), 2379–2385.

    Article  Google Scholar 

  12. Vigneri, R., Goldfine, I. D., & Frittitta, L. J. J. O. E. I. (2016). Insulin, insulin receptors, and cancer. Journal of Endocrinological Investigation, 39, 1365–1376.

    Article  CAS  PubMed  Google Scholar 

  13. Hajduch, E., Alessi, D. R., Hemmings, B. A., & Hundal, H. S. (1998). Constitutive activation of protein kinase Balpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivatio n of glycogen synthase kinase 3 in L6 muscle cells. Diabetes, 47, 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  14. Iwanaga, K., Ono, S., Narioka, K., Morimoto, K., Kakemi, M., Yamashita, S., & Oku, N. (1997). Oral delivery of insulin by using surface coating liposomes: improvement of stability of insulin in GI tract. International Journal of Pharmaceutics, 157, 73–80.

    Article  CAS  Google Scholar 

  15. Vrontakis, M. E. (2002). Galanin: a biologically active peptide. Current Drug Targets-CNS & Neurological Disorders, 1, 531–541.

    Article  CAS  Google Scholar 

  16. Kyrkouli, S. E., Stanley, B. G., Seirafi, R. & Leibowitz, D. (1990). Stimulation of feeding by galanin: anatomical localization and behavioral specificity of this peptide’s effects in the brain. Peptides, 11, 995–1001.

    Article  CAS  PubMed  Google Scholar 

  17. Jochen, A. L., Hays, J., & Mick, G. (1995). Inhibitory effects of cerulenin on protein palmitoylation and insulin internalization in rat adipocytes. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1259, 65–72.

    Article  Google Scholar 

  18. Benzi, L., Cecchetti, P., Ciccarone, A., Novelli, S., Paoli, A., Bertacca, A., Maffei, M., Maggi, D., Andraghetti, G., Del Prato, S. & Cordera, R. (2003). The extracellular portion of the insulin receptor beta-subunit regulates the cellular trafficking of the insulin-insulin receptor complex. Studies on Chinese hamster ovary cells carrying the cys 860−−>ser insulin receptor mutation. European Journal of Endocrinology, 148(3), 365–71.

    Article  CAS  PubMed  Google Scholar 

  19. Liang, Y., Sheng, S., Fang, P., Ma, Y., Li, J., Shi, Q., & Shi, M. (2012). Exercise-induced galanin release facilitated GLUT4 translocation in adipocytes of type 2 diabetic rats. Pharmacology Biochemistry and Behavior, 100, 554–559.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. Li for the necessary information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangZhi Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Qin, Y., Wang, S. et al. Galanin enhanced insulin-mediated intracellular signaling by regulating the stability of membrane-localized insulin/IR. Cell Biochem Biophys 80, 321–330 (2022). https://doi.org/10.1007/s12013-021-01049-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01049-x

Keywords

Navigation