Skip to main content

Advertisement

Log in

Pentalinonsterol, a Phytosterol from Pentalinon andrieuxii, is Immunomodulatory through Phospholipase A2 in Macrophages toward its Antileishmanial Action

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AA :

arachidonic acid

BMDM :

bone marrow-derive macrophages

COX :

cyclooxyginases

cPLA2 :

cytosolic PLA2

EDTA :

ethylenediaminetetraacetic acid

EGTA :

ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

ERK :

extracellular signal-regulated kinase

GMCSF :

granulocyte-macrophage colony-stimulating factor

LOX :

lipoxygenases

MAPKs :

mitogen-activated protein kinases

PARE :

Pentalinon andrieuxii root extract

PEN :

pentalinonsterol

PLA 2 :

phospholipase A2

PGs :

prostaglandins

PUFAp :

poly unsaturated fatty acids

TBST :

Tris-buffered saline.

References

  1. 2011. Working to overcome the global impact of neglected tropical diseases—summary. The Weekly Epidemiological Record, 86, 113–120

  2. Mashayekhi-Ghoyonlo, V., Kiafar, B., Rohani, M., Esmaeili, H., & Erfanian-Taghvaee, M. R. (2015). Correlation between socioeconomic status and clinical course in patients with cutaneous leishmaniasis. Journal of Cutaneous Medicine and Surgery, 19, 40–44

    Article  PubMed  Google Scholar 

  3. Varikuti, S., Oghumu, S., Saljoughian, N., Pioso, M. S., Sedmak, B. E., Khamesipour, A., & Satoskar, A. R. (2017). Topical treatment with nanoliposomal Amphotericin B reduces early lesion growth but fails to induce cure in an experimental model of cutaneous leishmaniasis caused by Leishmania mexicana. Acta Tropica, 173, 102–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Veiga, J. P., Rosa, T. T., Kimachi, T., Wolff, E. R., Sampaio, R. N., Gagliardi, A. R., Junqueira, Jr, L. F., Costa, J. M., & Marsden, P. D. (1985). Renal function in patients with mucocutaneous leishmaniasis treated with pentavalent antimony compounds. Revista do Instituto de Medicina Tropical de Sao Paulo, 27, 298–302

    Article  CAS  PubMed  Google Scholar 

  5. Sundar, S., More, D. K., Singh, M. K., Singh, V. P., Sharma, S., Makharia, A., Kumar, P. C., & Murray, H. W. (2000). Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clinical Infectious Diseases, 31, 1104–1107

    Article  CAS  PubMed  Google Scholar 

  6. Lira, R., Sundar, S., Makharia, A., Kenney, R., Gam, A., Saraiva, E., & Sacks, D. (1999). Evidence that the high incidence of treatment failures in Indian kala-azar is due to the emergence of antimony-resistant strains of Leishmania donovani. The Journal of Infectious Diseases, 180, 564–567

    Article  CAS  PubMed  Google Scholar 

  7. Polonio, T., & Efferth, T. (2008). Leishmaniasis: drug resistance and natural products (review). International Journal of Molecular Medicine, 22, 277–286

    CAS  PubMed  Google Scholar 

  8. Oghumu, S., Varikuti, S., Saljoughian, N., Terrazas, C., Huntsman, A. C., Parinandi, N. L., Fuchs, J. R., Kinghorn, A. D., & Satoskar, A. R. (2017). Pentalinonsterol, a constituent of Pentalinon andrieuxii, possesses potent immunomodulatory activity and primes T cell immune responses. Journal of Natural Products, 80, 2515–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lezama-Davila, C. M., Isaac-Marquez, A. P., Zamora-Crescencio, P., Uc-Encalada Mdel, R., Justiniano-Apolinar, S. Y., del Angel-Robles, L., Satoskar, A., & Hernandez-Rivero, L. (2007). Leishmanicidal activity of Pentalinon andrieuxii. Fitoterapia, 78, 255–257

    Article  PubMed  Google Scholar 

  10. Lezama-Davila, C. M., Pan, L., Isaac-Marquez, A. P., Terrazas, C., Oghumu, S., Isaac-Marquez, R., Pech-Dzib, M. Y., Barbi, J., Calomeni, E., Parinandi, N., Kinghorn, A. D., & Satoskar, A. R. (2014). Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytotherapy Research, 28, 909–916

    Article  PubMed  Google Scholar 

  11. Gupta, G., Peine, K. J., Abdelhamid, D., Snider, H., Shelton, A. B., Rao, L., Kotha, S. R., Huntsman, A. C., Varikuti, S., Oghumu, S., Naman, C. B., Pan, L., Parinandi, N. L., Papenfuss, T. L., Kinghorn, A. D., Bachelder, E. M., Ainslie, K. M., Fuchs, J. R., & Satoskar, A. R. (2015). A novel sterol isolated from a plant used by Mayan traditional healers is effective in treatment of visceral leishmaniasis caused by Leishmania donovani. ACS Infectious Diseases, 1, 497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burke, J. E., & Dennis, E. A. (2009). Phospholipase A2 structure/function, mechanism, and signaling. Journal of Lipid Research, 50(Suppl), S237–242

    Article  PubMed  PubMed Central  Google Scholar 

  13. Brown, W. J., Chambers, K., & Doody, A. (2003). Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic, 4, 214–221

    Article  CAS  PubMed  Google Scholar 

  14. Mazerik, J. N., Hagele, T., Sherwani, S., Ciapala, V., Butler, S., Kuppusamy, M. L., Hunter, M., Kuppusamy, P., Marsh, C. B., & Parinandi, N. L. (2007). Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells. International Journal of Toxicology, 26, 553–569

    Article  CAS  PubMed  Google Scholar 

  15. Touqui, L., & Alaoui-El-Azher, M. (2001). Mammalian secreted phospholipases A2 and their pathophysiological significance in inflammatory diseases. Current Molecular Medicine, 1, 739–754

    Article  CAS  PubMed  Google Scholar 

  16. Hirabayashi, T., Murayama, T., & Shimizu, T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biological & Pharmaceutical Bulletin, 27, 1168–1173

    Article  CAS  Google Scholar 

  17. Kotha, S. R., Piper, M. G., Patel, R. B., Sliman, S., Malireddy, S., Zhao, L., Baran, C. P., Nana-Sinkam, P. S., Wewers, M. D., Romberger, D., Marsh, C. B., & Parinandi, N. L. (2013). Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release. Cell Biochemistry and Biophysics, 67, 415–429

    Article  CAS  PubMed  Google Scholar 

  18. Oghumu, S., Gupta, G., Snider, H. M., Varikuti, S., Terrazas, C. A., Papenfuss, T. L., Kaplan, M. H., & Satoskar, A. R. (2014). STAT4 is critical for immunity but not for antileishmanial activity of antimonials in experimental visceral leishmaniasis. European Journal of Immunology, 44, 450–459

    Article  CAS  PubMed  Google Scholar 

  19. Pan, L., Lezama-Davila, C. M., Isaac-Marquez, A. P., Calomeni, E. P., Fuchs, J. R., Satoskar, A. R., & Kinghorn, A. D. (2012). Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry, 82, 128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, J., Guan, S. M., Sun, W., & Fu, H. (2016). Melittin, the major pain-producing substance of bee venom. Neuroscience Bulletin, 32, 265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassid, A., & Levine, L. (1977). Stimulation of phospholipase activity and prostaglandin biosynthesis by melittin in cell culture and in vivo. Research Communications in Chemical Pathology and Pharmacology, 18, 507–517

    CAS  PubMed  Google Scholar 

  22. Sharma, S. V. (1993). Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene, 8, 939–947

    CAS  PubMed  Google Scholar 

  23. Rosa, A. O., & Rapoport, S. I. (2009). Intracellular- and extracellular-derived Ca(2+) influence phospholipase A(2)-mediated fatty acid release from brain phospholipids. Biochimica et Biophysica Acta, 1791, 697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., & Sigler, P. B. (1990). Interfacial catalysis: the mechanism of phospholipase A2. Science, 250, 1541–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kudo, I., & Murakami, M. (2002). Phospholipase A2 enzymes. Prostaglandins & Other Lipid Mediators, 68-69, 3–58

    Article  CAS  Google Scholar 

  26. Xu, J., Weng, Y. I., Simonyi, A., Krugh, B. W., Liao, Z., Weisman, G. A., & Sun, G. Y. (2002). Role of PKC and MAPK in cytosolic PLA2 phosphorylation and arachadonic acid release in primary murine astrocytes. Journal of Neurochemistry, 83, 259–270

    Article  CAS  PubMed  Google Scholar 

  27. Gijon, M. A., Spencer, D. M., Siddiqi, A. R., Bonventre, J. V., & Leslie, C. C. (2000). Cytosolic phospholipase A2 is required for macrophage arachidonic acid release by agonists that Do and Do not mobilize calcium. Novel role of mitogen-activated protein kinase pathways in cytosolic phospholipase A2 regulation. The Journal of Biological Chemistry, 275, 20146–20156

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, X., Sano, H., Kim, K. P., Sano, A., Boetticher, E., Munoz, N. M., Cho, W., & Leff, A. R. (2001). Role of mitogen-activated protein kinase-mediated cytosolic phospholipase A2 activation in arachidonic acid metabolism in human eosinophils. Journal of Immunology, 167, 461–468

    Article  CAS  Google Scholar 

  29. Cargnello, M., & Roux, P. P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology and Molecular Biology Reviews, 75, 50–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Berenbaum, F., Humbert, L., Bereziat, G., & Thirion, S. (2003). Concomitant recruitment of ERK1/2 and p38 MAPK signalling pathway is required for activation of cytoplasmic phospholipase A2 via ATP in articular chondrocytes. The Journal of Biological Chemistry, 278, 13680–13687

    Article  CAS  PubMed  Google Scholar 

  31. Lin, L. L., Wartmann, M., Lin, A. Y., Knopf, J. L., Seth, A., & Davis, R. J. (1993). cPLA2 is phosphorylated and activated by MAP kinase. Cell, 72, 269–278

    Article  CAS  PubMed  Google Scholar 

  32. Bunt, G., de Wit, J., van den Bosch, H., Verkleij, A. J., & Boonstra, J. (1997). Ultrastructural localization of cPLA2 in unstimulated and EGF/A23187-stimulated fibroblasts. Journal of Cell Science, 110(Pt 19), 2449–2459

    Article  CAS  PubMed  Google Scholar 

  33. Baud, V., & Karin, M. (2001). Signal transduction by tumor necrosis factor and its relatives. Trends in Cell Biology, 11, 372–377

    Article  CAS  PubMed  Google Scholar 

  34. Mayer, R. J., & Marshall, L. A. (1993). New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. The FASEB Journal, 7, 339–348

    Article  CAS  PubMed  Google Scholar 

  35. Chakraborti, S. (2003). Phospholipase A(2) isoforms: a perspective. Cell Signalling, 15, 637–665

    Article  CAS  PubMed  Google Scholar 

  36. Sun, G. Y., Xu, J., Jensen, M. D., & Simonyi, A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. Journal of Lipid Research, 45, 205–213

    Article  CAS  PubMed  Google Scholar 

  37. Carpena, M., Nunez-Estevez, B., Soria-Lopez, A. & Simal-Gandara, J. (2020). Bee venom: an updating review of its bioactive molecules and its health applications. Nutrients, 12, 1–27

    Article  Google Scholar 

  38. Pucca, M. B., Ahmadi, S., Cerni, F. A., Ledsgaard, L., Sorensen, C. V., McGeoghan, F. T. S., Stewart, T., Schoof, E., Lomonte, B., Auf dem Keller, U., Arantes, E. C., Caliskan, F., & Laustsen, A. H. (2020). Unity makes strength: exploring intraspecies and interspecies toxin synergism between phospholipases A2 and cytotoxins. Frontiers in Pharmacology, 11, 611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Son, D. J., Lee, J. W., Lee, Y. H., Song, H. S., Lee, C. K., & Hong, J. T. (2007). Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacology & Therapeutics, 115, 246–270

    Article  CAS  Google Scholar 

  40. Clark, J. D., Schievella, A. R., Nalefski, E. A., & Lin, L. L. (1995). Cytosolic phospholipase A2. Journal of Lipid Mediators and Cell Signalling, 12, 83–117

    Article  CAS  PubMed  Google Scholar 

  41. Shimizu, M., Nakamura, H., Hirabayashi, T., Suganami, A., Tamura, Y., & Murayama, T. (2008). Ser515 phosphorylation-independent regulation of cytosolic phospholipase A2alpha (cPLA2alpha) by calmodulin-dependent protein kinase: possible interaction with catalytic domain A of cPLA2alpha. Cell Signalling, 20, 815–824

    Article  CAS  PubMed  Google Scholar 

  42. Kifor, O., MacLeod, R. J., Diaz, R., Bai, M., Yamaguchi, T., Yao, T., Kifor, I., & Brown, E. M. (2001). Regulation of MAP kinase by calcium-sensing receptor in bovine parathyroid and CaR-transfected HEK293 cells. American Journal of Physiology Renal Physiology, 280, F291–302

    Article  CAS  PubMed  Google Scholar 

  43. Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K., & Kudo, I. (1997). Regulatory functions of phospholipase A2. Critical Reviews in Immunology, 17, 225–283

    Article  CAS  PubMed  Google Scholar 

  44. Saraf, A., Larsson, L., Larsson, B. M., Larsson, K., & Palmberg, L. (1999). House dust induces IL-6 and IL-8 response in A549 epithelial cells. Indoor Air, 9, 219–225

    Article  CAS  PubMed  Google Scholar 

  45. Kramer, R. M., & Sharp, J. D. (1995). Recent insights into the structure, function and biology of cPLA2. Agents and Actions Supplements, 46, 65–76

    CAS  PubMed  Google Scholar 

  46. Tian, W., Wijewickrama, G. T., Kim, J. H., Das, S., Tun, M. P., Gokhale, N., Jung, J. W., Kim, K. P., & Cho, W. (2008). Mechanism of regulation of group IVA phospholipase A2 activity by Ser727 phosphorylation. The Journal of Biological Chemistry, 283, 3960–3971

    Article  CAS  PubMed  Google Scholar 

  47. Allermann, L., & Poulsen, O. M. (2002). Interleukin-8 secretion from monocytic cell lines for evaluation of the inflammatory potential of organic dust. Environmental Research, 88, 188–198

    Article  CAS  PubMed  Google Scholar 

  48. Hansen, L. A., Poulsen, O. M., & Wurtz, H. (1999). Endotoxin potency in the A549 lung epithelial cell bioassay and the limulus amebocyte lysate assay. Journal of Immunological Methods, 226, 49–58

    Article  CAS  PubMed  Google Scholar 

  49. Ezzie, M. E., Piper, M. G., Montague, C., Newland, C. A., Opalek, J. M., Baran, C., Ali, N., Brigstock, D., Lawler, J., & Marsh, C. B. (2011). Thrombospondin-1-deficient mice are not protected from bleomycin-induced pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 44, 556–561

    Article  CAS  PubMed  Google Scholar 

  50. Blanco-Vaca, F., Cedo, L., & Julve, J. (2019). Phytosterols in cancer: from molecular mechanisms to preventive and therapeutic potentials. Current Medicinal Chemistry, 26, 6735–6749

    Article  CAS  PubMed  Google Scholar 

  51. Awad, A. B., & Fink, C. S. (2000). Phytosterols as anticancer dietary components: evidence and mechanism of action. The Journal of Nutrition, 130, 2127–2130

    Article  CAS  PubMed  Google Scholar 

  52. Bard, J. M., Paillard, F., & Lecerf, J. M. (2015). Effect of phytosterols/stanols on LDL concentration and other surrogate markers of cardiovascular risk. Diabetes & Metabolism, 41, 69–75

    Article  CAS  Google Scholar 

  53. Vezza, T., Canet, F., de Maranon, A. M., Banuls, C., Rocha, M. & Victor, V. M. (2020). Phytosterols: nutritional health players in the management of obesity and its related disorders. Antioxidants, 9, 1–20

    Article  Google Scholar 

  54. Fakih, O., Sanver, D., Kane, D., & Thorne, J. L. (2018). Exploring the biophysical properties of phytosterols in the plasma membrane for novel cancer prevention strategies. Biochimie, 153, 150–161

    Article  CAS  PubMed  Google Scholar 

  55. He, W. S., Zhu, H., & Chen, Z. Y. (2018). Plant sterols: chemical and enzymatic structural modifications and effects on their cholesterol-lowering activity. Journal of Agricultural and Food Chemistry, 66, 3047–3062

    Article  CAS  PubMed  Google Scholar 

  56. Malireddy, S., Lawson, C., Steinhour, E., Hart, J., Kotha, S. R., Patel, R. B., Zhao, L., Wilkins, J. R., Marsh, C. B., Magalang, U. J., Romberger, D., Wewers, M. D., & Parinandi, N. L. (2013). Airborne agricultural particulate matter induces inflammatory cytokine secretion by respiratory epithelial cells: mechanisms of regulation by eicosanoid lipid signal mediators. Indian Journal of Biochemistry & Biophysics, 50, 387–401

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Department of Defence (DOD) USA grant awarded to ARS and NLP, Departments of Pathology and Internal Medicine and the Division of Pulmonary, Critical Care, and Sleep Medicine of the Ohio State University Wexner Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhay R. Satoskar or Narasimham L. Parinandi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varikuti, S., Shelton, A.B., Kotha, S.R. et al. Pentalinonsterol, a Phytosterol from Pentalinon andrieuxii, is Immunomodulatory through Phospholipase A2 in Macrophages toward its Antileishmanial Action. Cell Biochem Biophys 80, 45–61 (2022). https://doi.org/10.1007/s12013-021-01030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01030-8

Keywords

Navigation