Skip to main content

Advertisement

Log in

Different Changing Patterns of Three NOS–NO System Activities after Ischemia–Reperfusion in Rabbit with AMI

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

NOS–NO system activity is closely correlated with ischemia–reperfusion injury (IRI) and NOS subtypes were suggested to play different roles in IRI. In this work, the activity of serum NOS, NO levels, and ischemic necrosis after reperfusion in rabbit with AMI at different time was studied. We also explored the NOS–NO system activity changes and its correlation with myocardial ischemia and necrosis. It shows that after reperfusion in rabbits with AMI, NO–NOS system activities present different changes at each time point due to inactivation of NO and iNOS activation, and different experimental animals, ischemia–reperfusion degree, and length of time will also lead to different research results. Therefore, it is necessary to conduct dynamic observation on animals from different species at multi-temporal point under the state of NOS–NO system activities, and simultaneously detect inflammatory factor, MDA, and SOD indexes. Therefore, it is a must to conduct relevant drug research studies to make NOS–NO system activities maintain the level in favor of ideal myocardial ischemia reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Er, F., Dahlem, K. M., Nia, A. M., Erdmann, E., & Waltenberger, J., et al. (2016). Randomized control of sympathetic drive with continuous intravenous esmolol in patients with acute ST-segment elevation myocardial infarction: The BEtA-Blocker Therapy in Acute Myocardial Infarction (BEAT-AMI) Trial. JACC: Cardiovascular Interventions, 9(3), 231–240.

    PubMed  Google Scholar 

  2. Binder, A., Ali, A., Chawla, R., Aziz, H. A., & Abbate, A., et al. (2015). Myocardial protection from ischemia-reperfusion injury post coronary revascularization. Expert Review of Cardiovascular Therapy, 13(9), 1045–1057.

    Article  CAS  Google Scholar 

  3. Ota, S., Tanimoto, T., Hirata, K., Orii, M., & Shiono, Y., et al. (2014). Assessment of circumferential endocardial extent of myocardial edema and infarction in patients with reperfused acute myocardial infarction: A cardiovascular magnetic resonance study. International Heart Journal, 55(3), 234–238.

    Article  Google Scholar 

  4. Anderson, J. L., & Morrow, D. A. (2017). Acute myocardial infarction. The New England Journal of Medicine, 376(21), 2053–2064.

    Article  CAS  Google Scholar 

  5. Zhang, J., Qi, X. Y., Wan, Y. F., & Yuan, C. (2011). Establishment of a reperfusion model in rabbits with acute myocardial infarction. Cell Biochemistry and Biophysics, 60(3), 249–258.

    Article  CAS  Google Scholar 

  6. He, P., Talukder, M. A. H., & Gao, F. (2020). Oxidative stress and microvessel barrier dysfunction. Frontiers in Physiology, 11, 472.

    Article  Google Scholar 

  7. Hernandez-Resendiz, S., Munoz-Vega, M., Contreras, W. E., Crespo-Avilan, G. E., & Rodriguez-Montesinos, J., et al. (2018). Responses of endothelial cells towards ischemic conditioning following acute myocardial infarction. Conditioning Medicine, 1(5), 247–258.

    PubMed  PubMed Central  Google Scholar 

  8. Lee, J., Bae, E. H., Ma, S. K., & Kim, S. W. (2016). Altered nitric oxide system in cardiovascular and renal diseases. Chonnam Medical Journal, 52(2), 81–90.

    Article  CAS  Google Scholar 

  9. Jones, S. P., Greer, J. J., Kakkar, A. K., Ware, P. D., & Turnage, R. H., et al. (2004). Endothelial nitric oxide synthase overexpression attenuates myocardial reperfusion injury. The American Journal of Physiology-Heart and Circulatory Physiology, 286(1), H276–H282.

    Article  CAS  Google Scholar 

  10. Mallet, R. T., Manukhina, E. B., Ruelas, S. S., Caffrey, J. L., & Downey, H. F. (2018). Cardioprotection by intermittent hypoxia conditioning: Evidence, mechanisms, and therapeutic potential. The American Journal of Physiology-Heart and Circulatory Physiology, 315(2), H216–H232.

    Article  CAS  Google Scholar 

  11. Song, W., Lu, X., & Feng, Q. (2000). Tumor necrosis factor-alpha induces apoptosis via inducible nitric oxide synthase in neonatal mouse cardiomyocytes. Cardiovascular Research, 45(3), 595–602.

    Article  CAS  Google Scholar 

  12. Liu, Y., Xia, C., Wang, R., Zhang, J., & Yin, T., et al. (2017). The opposite effects of nitric oxide donor, S-nitrosoglutathione, on myocardial ischaemia/reperfusion injury in diabetic and non-diabetic mice. Clinical and Experimental Pharmacology and Physiology, 44(8), 854–861.

    Article  CAS  Google Scholar 

  13. Khojah, H. M., Ahmed, S., Abdel-Rahman, M. S., & Hamza, A. B. (2016). Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radical Biology and Medicine, 97, 285–291.

    Article  CAS  Google Scholar 

  14. Engel, H., Friedrich, S., Schleich, C., Gebhardt, M. M., & Gross, W., et al. (2017). Enhancing nitric oxide bioavailability via exogen nitric oxide synthase and L-arginine attenuates ischemia-reperfusion-induced microcirculatory alterations. Annals of Plastic Surgery, 79(4), e25–e29.

    Article  CAS  Google Scholar 

  15. Wang, Y., Song, X., Yue, X., Su, H., & Gu, Y., et al. (2017). Protection by nitrite against the ischemic effects induced by acute myocardial infarction in mice. The Anatolian Journal of Cardiology, 18(5), 315–320.

    CAS  PubMed  Google Scholar 

  16. Muscari, C., Bonafe, F., Gamberini, C., Giordano, E., & Tantini, B., et al. (2004). Early preconditioning prevents the loss of endothelial nitric oxide synthase and enhances its activity in the ischemic/reperfused rat heart. Life Sciences, 74(9), 1127–37.

    Article  CAS  Google Scholar 

  17. Zhang, Y., Bissing, J. W., Xu, L., Ryan, A. J., & Martin, S. M., et al. (2001). Nitric oxide synthase inhibitors decrease coronary sinus-free radical concentration and ameliorate myocardial stunning in an ischemia-reperfusion model. Journal of the American College of Cardiology, 38(2), 546–54.

    Article  CAS  Google Scholar 

  18. Yu, X., Ge, L., Niu, L., Lian, X., & Ma, H., et al. (2018). The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: Friend or foe? Oxidative Medicine and Cellular Longevity, 2018, 8364848.

    PubMed  PubMed Central  Google Scholar 

  19. Gross, G. J., Hsu, A., Pfeiffer, A. W., & Nithipatikom, K. (2013). Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. Journal of Molecular and Cellular Cardiology, 59, 20–29.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interes.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, C., Li, F. et al. Different Changing Patterns of Three NOS–NO System Activities after Ischemia–Reperfusion in Rabbit with AMI. Cell Biochem Biophys 79, 857–862 (2021). https://doi.org/10.1007/s12013-021-01011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01011-x

Keywords

Navigation