Skip to main content

Advertisement

Log in

Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Tazarotene-induced gene 1 (TIG1) is a retinoid acid receptor-responsive gene involved in cell differentiation and tumorigenesis. Aberrant methylation of CpG islands in the TIG1 promoter is found in multiple cancers. Currently, the exact mechanism underlying the anticancer effect of TIG1 is unknown. Here, we show that TIG1 interacts with cathepsin V (CTSV), which reduces CTSV stability and subsequently affects the production of activated urokinase-type plasminogen activator (uPA), an epithelial–mesenchymal transition-associated protein. Ectopic expression of CTSV increased the expression of activated uPA and the number of migrated and invaded cells, whereas ectopic TIG1 expression reversed the effects of CTSV on the uPA signaling pathway. Similar patterns in the production of activated uPA and number of migrated and invaded cells were also observed in TIG1-expressing and CTSV-knockdown cells. The results suggest that CTSV may participate in TIG1-regulated uPA activity and the associated downstream signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ohnishi, S., Okabe, K., Obata, H., Otani, K., Ishikane, S., Ogino, H., Kitamura, S., & Nagaya, N. (2009). Involvement of tazarotene-induced gene 1 in proliferation and differentiation of human adipose tissue-derived mesenchymal stem cells. Cell Proliferation, 42(3), 309–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, C. C., Shyu, R. Y., Chou, J. M., Jao, S. W., Chao, P. C., Kang, J. C., Wu, S. T., Huang, S. L., & Jiang, S. Y. (2006). RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. European Journal of Cancer, 42(4), 557–565.

    CAS  PubMed  Google Scholar 

  3. Maimouni, S., Issa, N., Cheng, S., Ouaari, C., Cheema, A., Kumar, D., & Byers, S. (2018). Tumor suppressor RARRES1- A novel regulator of fatty acid metabolism in epithelial cells. PLoS ONE, 13(12), e0208756.

    PubMed  PubMed Central  Google Scholar 

  4. Maimouni, S., Lee, M. H., Sung, Y. M., Hall, M., Roy, A., Ouaari, C., Hwang, Y. S., Spivak, J., Glasgow, E., Swift, M., Patel, J., Cheema, A., Kumar, D., & Byers, S. (2019). Tumor suppressor RARRES1 links tubulin deglutamylation to mitochondrial metabolism and cell survival. Oncotarget, 10(17), 1606–1624.

    PubMed  PubMed Central  Google Scholar 

  5. Roy, A., Ramalinga, M., Kim, O. J., Chijioke, J., Lynch, S., Byers, S., & Kumar, D. (2017). Multiple roles of RARRES1 in prostate cancer: autophagy induction and angiogenesis inhibition. PLoS ONE, 12(7), e0180344.

    PubMed  PubMed Central  Google Scholar 

  6. Shyu, R. Y., Wang, C. H., Wu, C. C., Chen, M. L., Lee, M. C., Wang, L. K., Jiang, S. Y., & Tsai, F. M. (2016). Tazarotene-induced gene 1 enhanced cervical cell autophagy through transmembrane protein 192. Molecules and Cells, 39(12), 877–887.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huebner, H., Strick, R., Wachter, D. L., Kehl, S., Strissel, P. L., Schneider-Stock, R., Hartner, A., Rascher, W., Horn, L. C., Beckmann, M. W., Ruebner, M., & Fahlbusch, F. B. (2017). Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma. Journal of Experimental and Clinical Cancer Research, 36(1), 165.

    CAS  PubMed  Google Scholar 

  8. Zimpfer, A., Dammert, F., Glass, A., Zettl, H., Kilic, E., Maruschke, M., Hakenberg, O. W., & Erbersdobler, A. (2016). Expression and clinicopathological correlations of retinoid acid receptor responder protein 1 in renal cell carcinomas. Biomarkers in Medicine, 10(7), 721–732.

    CAS  PubMed  Google Scholar 

  9. Kwok, W. K., Pang, J. C., Lo, K. W., & Ng, H. K. (2009). Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genetics and Cytogenetics, 194(1), 58–64.

    CAS  PubMed  Google Scholar 

  10. Peterfi, L., Banyai, D., Yusenko, M. V., Bjercke, T., & Kovacs, G. (2020). Expression of RARRES1 and AGBL2 and progression of conventional renal cell carcinoma. British Journal of Cancer. In press. https://doi.org/10.1038/s41416-020-0798-6.

  11. Liang, Y., Jansen, M., Aronow, B., Geiger, H., & Van Zant, G. (2007). The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nature Genetics, 39(2), 178–188.

    CAS  PubMed  Google Scholar 

  12. Wu, C. C., Tsai, F. M., Shyu, R. Y., Tsai, Y. M., Wang, C. H., & Jiang, S. Y. (2011). G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer, 11, 175.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsai, F. M., Wu, C. C., Shyu, R. Y., Wang, C. H., & Jiang, S. Y. (2011). Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. Journal of Biomedical Science, 18, 88.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sahab, Z. J., Hall, M. D., Me Sung, Y., Dakshanamurthy, S., Ji, Y., Kumar, D., & Byers, S. W. (2011). Tumor suppressor RARRES1 interacts with cytoplasmic carboxypeptidase AGBL2 to regulate the alpha-tubulin tyrosination cycle. Cancer Research, 71(4), 1219–1228.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, C. H., Shyu, R. Y., Wu, C. C., Chen, M. L., Lee, M. C., Lin, Y. Y., Wang, L. K., Jiang, S. Y., & Tsai, F. M. (2018). Tazarotene-induced gene 1 interacts with DNAJC8 and regulates glycolysis in cervical cancer cells. Molecules and Cells, 41(6), 562–574.

    PubMed  PubMed Central  Google Scholar 

  16. Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., & Turk, D. (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochimica et Biophysica Acta—Proteins and Proteomics, 1824(1), 68–88.

    CAS  Google Scholar 

  17. Santamaria, I., Velasco, G., Cazorla, M., Fueyo, A., Campo, E., & Lopez-Otin, C. (1998). Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Research, 58(8), 1624–1630.

    CAS  PubMed  Google Scholar 

  18. Spira, D., Stypmann, J., Tobin, D. J., Petermann, I., Mayer, C., Hagemann, S., Vasiljeva, O., Gunther, T., Schule, R., Peters, C., & Reinheckel, T. (2007). Cell type-specific functions of the lysosomal protease cathepsin L in the heart. Journal of Biological Chemistry, 282(51), 37045–37052.

    CAS  PubMed  Google Scholar 

  19. Skrzypczak, M., Springwald, A., Lattrich, C., Haring, J., Schuler, S., Ortmann, O., & Treeck, O. (2012). Expression of cysteine protease cathepsin L is increased in endometrial cancer and correlates with expression of growth regulatory genes. Cancer Investigation, 30(5), 398–403.

    CAS  PubMed  Google Scholar 

  20. Kiuchi, S., Tomaru, U., Ishizu, A., Imagawa, M., Kiuchi, T., Iwasaki, S., Suzuki, A., Otsuka, N., Deguchi, T., Shimizu, T., Marukawa, K., Matsuno, Y., & Kasahara, M. (2017). Expression of cathepsins V and S in thymic epithelial tumors. Human Pathology, 60, 66–74.

    CAS  PubMed  Google Scholar 

  21. Toss, M., Miligy, I., Gorringe, K., Mittal, K., Aneja, R., Ellis, I., Green, A., & Rakha, E. (2020). Prognostic significance of cathepsin V (CTSV/CTSL2) in breast ductal carcinoma in situ. Journal of Clinical Pathology, 73(2), 76–82.

    CAS  PubMed  Google Scholar 

  22. Jing, J., Wang, S., Ma, J., Yu, L., & Zhou, H. (2018). Elevated CTSL2 expression is associated with an adverse prognosis in hepatocellular carcinoma. International Journal of Clinical and Experimental Pathology, 11(8), 4035–4043.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Koblinski, J. E., Ahram, M., & Sloane, B. F. (2000). Unraveling the role of proteases in cancer. Clinica Chimica Acta, 291(2), 113–135.

    CAS  Google Scholar 

  24. Mitschke, J., Burk, U. C., & Reinheckel, T. (2019). The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Reviews, 38(3), 431–444.

    PubMed  Google Scholar 

  25. Goretzki, L., Schmitt, M., Mann, K., Calvete, J., Chucholowski, N., Kramer, M., Gunzler, W. A., Janicke, F., & Graeff, H. (1992). Effective activation of the proenzyme form of the urokinase-type plasminogen activator (pro-uPA) by the cysteine protease cathepsin L. FEBS Letter, 297(1-2), 112–118.

    CAS  Google Scholar 

  26. Kobayashi, H., Schmitt, M., Goretzki, L., Chucholowski, N., Calvete, J., Kramer, M., Gunzler, W. A., Janicke, F., & Graeff, H. (1991). Cathepsin B efficiently activates the soluble and the tumor cell receptor-bound form of the proenzyme urokinase-type plasminogen activator (Pro-uPA). Journal of Biological Chemistry, 266(8), 5147–5152.

    CAS  PubMed  Google Scholar 

  27. Maynadier, M., Farnoud, R., Lamy, P. J., Laurent-Matha, V., Garcia, M., & Rochefort, H. (2013). Cathepsin D stimulates the activities of secreted plasminogen activators in the breast cancer acidic environment. International Journal of Oncology, 43(5), 1683–1690.

    CAS  PubMed  Google Scholar 

  28. Legrand, C., Polette, M., Tournier, J. M., de Bentzmann, S., Huet, E., Monteau, M., & Birembaut, P. (2001). uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Experimental Cell Research, 264(2), 326–336.

    CAS  PubMed  Google Scholar 

  29. Quemener, C., Gabison, E. E., Naimi, B., Lescaille, G., Bougatef, F., Podgorniak, M. P., Labarchede, G., Lebbe, C., Calvo, F., Menashi, S., & Mourah, S. (2007). Extracellular matrix metalloproteinase inducer up-regulates the urokinase-type plasminogen activator system promoting tumor cell invasion. Cancer Research, 67(1), 9–15.

    CAS  PubMed  Google Scholar 

  30. Shyu, R. Y., Wang, C. H., Wu, C. C., Wang, L. K., Chen, M. L., Kuo, C. Y., Lee, M. C., Lin, Y. Y., & Tsai, F. M. (2019). Tazarotene-induced gene 1 (TIG1) interacts with serine protease inhibitor kazal-type 2 (SPINK2) to inhibit cellular invasion of testicular carcinoma cells. Biomed Research International, 2019, 6171065.

    PubMed  PubMed Central  Google Scholar 

  31. Wang, C. H., Wang, L. K., Wu, C. C., Chen, M. L., Lee, M. C., Lin, Y. Y., & Tsai, F. M. (2019). The ribosomal protein RPLP0 mediates PLAAT4-induced cell cycle arrest and cell apoptosis. Cell Biochemistry and Biophysics, 77(3), 253–260.

    CAS  PubMed  Google Scholar 

  32. Farinati, F., Herszenyi, L., Plebani, M., Carraro, P., De Paoli, M., Cardin, R., Roveroni, G., Rugge, M., Nitti, D., Grigioni, W. F., D’Errico, A., & Naccarato, R. (1996). Increased levels of cathepsin B and L, urokinase-type plasminogen activator and its inhibitor type-1 as an early event in gastric carcinogenesis. Carcinogenesis, 17(12), 2581–2587.

    CAS  PubMed  Google Scholar 

  33. Vidak, E., Javorsek, U., Vizovisek, M., & Turk, B. (2019). Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells, 8(3), 264.

    CAS  PubMed Central  Google Scholar 

  34. Kryczka, J., Papiewska-Pajak, I., Kowalska, M. A., & Boncela, J. (2019). Cathepsin B is upregulated and mediates ECM degradation in colon adenocarcinoma HT29 cells overexpressing snail. Cells, 8(3), 203.

    CAS  PubMed Central  Google Scholar 

  35. Wang, X., Saso, H., Iwamoto, T., Xia, W., Gong, Y., Pusztai, L., Woodward, W. A., Reuben, J. M., Warner, S. L., Bearss, D. J., Hortobagyi, G. N., Hung, M. C., & Ueno, N. T. (2013). TIG1 promotes the development and progression of inflammatory breast cancer through activation of Axl kinase. Cancer Research, 73(21), 6516–6525.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oldridge, E. E., Walker, H. F., Stower, M. J., Simms, M. S., Mann, V. M., Collins, A. T., Pellacani, D., & Maitland, N. J. (2013). Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis, 2, e45.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Mahmood, N., Mihalcioiu, C., & Rabbani, S. A. (2018). Multifaceted role of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR): diagnostic, prognostic, and therapeutic applications. Frontiers in Oncology, 8, 24.

    PubMed  PubMed Central  Google Scholar 

  38. Schmitt, M., Kanayama, N., Henschen, A., Hollrieder, A., Hafter, R., Gulba, D., Janicke, F., & Graeff, H. (1989). Elastase released from human granulocytes stimulated with N-formyl-chemotactic peptide prevents activation of tumor cell prourokinase (pro-uPA). FEBS Letter, 255(1), 83–88.

    CAS  Google Scholar 

  39. Madunic, J. (2018). The urokinase plasminogen activator system in human cancers: an overview of its prognostic and predictive role. Thrombosis and Haemostasis, 118(12), 2020–2036.

    PubMed  Google Scholar 

  40. Riisbro, R., Christensen, I. J., Nielsen, H. J., Brunner, N., Nilbert, M., & Fernebro, E. (2005). Preoperative plasma soluble urokinase plasminogen activator receptor as a prognostic marker in rectal cancer patients. An EORTC-Receptor and Biomarker Group collaboration. International Journal of Biological Markers, 20(2), 93–102.

    CAS  PubMed  Google Scholar 

  41. Halamkova, J., Kiss, I., Pavlovsky, Z., Tomasek, J., Jarkovsky, J., Cech, Z., Tucek, S., Hanakova, L., Moulis, M., Zavrelova, J., Man, M., Benda, P., Robek, O., Kala, Z., & Penka, M. (2011). Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients. Neoplasma, 58(5), 377–385.

    CAS  PubMed  Google Scholar 

  42. Herszenyi, L., Farinati, F., Cardin, R., Istvan, G., Molnar, L. D., Hritz, I., De Paoli, M., Plebani, M., & Tulassay, Z. (2008). Tumor marker utility and prognostic relevance of cathepsin B, cathepsin L, urokinase-type plasminogen activator, plasminogen activator inhibitor type-1, CEA and CA 19-9 in colorectal cancer. BMC Cancer, 8, 194.

    PubMed  PubMed Central  Google Scholar 

  43. Yang, J. L., Seetoo, D., Wang, Y., Ranson, M., Berney, C. R., Ham, J. M., Russell, P. J., & Crowe, P. J. (2000). Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets. International Journal of Cancer, 89(5), 431–439.

    CAS  PubMed  Google Scholar 

  44. Yeh, C. S., Wang, J. Y., Wu, C. H., Chong, I. W., Chung, F. Y., Wang, Y. H., Yu, Y. P., & Lin, S. R. (2006). Molecular detection of circulating cancer cells in the peripheral blood of patients with colorectal cancer by using membrane array with a multiple mRNA marker panel. International Journal of Oncology, 28(2), 411–420.

    CAS  PubMed  Google Scholar 

  45. Aagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C. A., Flanagan, J. U., Kellie, S., Hume, D. A., Kobe, B., & Martin, J. L. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure, 13(2), 309–317.

    CAS  PubMed  Google Scholar 

  46. Kobayashi, H., Ohi, H., Sugimura, M., Shinohara, H., Fujii, T., & Terao, T. (1992). Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Research, 52(13), 3610–3614.

    CAS  PubMed  Google Scholar 

  47. Choi, K. Y., Swierczewska, M., Lee, S., & Chen, X. (2012). Protease-activated drug development. Theranostics, 2(2), 156–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Allgayer, H., Babic, R., Grutzner, K. U., Beyer, B. C., Tarabichi, A., Wilhelm Schildberg, F., & Heiss, M. M. (1997). An immunohistochemical assessment of cathepsin D in gastric carcinoma: its impact on clinical prognosis. Cancer, 80(2), 179–187.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants (TCRD-TPE-108-59 and TCRD-TPE-107-45) from the Taipei Tzuchi Hospital, Taipei, Taiwan, Republic of China. The authors thank the Core Laboratory of the Taipei Tzuchi Hospital for support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Yaun Shyu or Fu-Ming Tsai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CH., Wang, LK., Wu, CC. et al. Cathepsin V Mediates the Tazarotene-induced Gene 1-induced Reduction in Invasion in Colorectal Cancer Cells. Cell Biochem Biophys 78, 483–494 (2020). https://doi.org/10.1007/s12013-020-00940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00940-3

Keywords

Navigation