Skip to main content
Log in

A Simple Analytical Approximation to an Inhomogeneously-Broadened Dispersion Spectrum. Application to Absorption-Dispersion Admixtures

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

An Erratum to this article was published on 16 June 2017

Abstract

A simple analytical approximation to an inhomogeneously-broadened dispersion signal is proposed and tested with resonance lines broadened by unresolved hyperfine structure. Spectral parameters may be rapidly and accurately extracted using a nonlinear least-squares fitting algorithm. Combining the new approximation to a dispersion signal with a well-known approximation to the absorption signal allows dispersion-absorption admixtures, a problem of growing importance, to be analyzed quickly and accurately. For pure dispersion signals, the maximum difference between the fit and the signal for unresolved lines is 1.1 % of the maximum intensity. For pure absorption, the difference is 0.33 % of the peak-to-peak intensity, and for admixtures up to 40 % dispersion (maximum intensity/peak-to-peak intensity), the difference is 0.7 %. The accuracy of the recovered spectral parameters depends on the degree of inhomogeneously-broadened and the percentage admixture, but they are generally about 1 % at most. A significant finding of the work is that the parameters pertinent to the dispersion or the absorption are insignificantly different when fitting isolated lines vs. fitting admixtures. Admixtures with added noise or an unsuspected extraneous line are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. To simplify the presentation, we abbreviate the Voigt, Lorentzian, Gaussian, and sum-function line shape functions as simply the Voigt, Lorentzian, Gaussian, and sum-function, respectively. To distinguish between the absorption and dispersion, we refer, to the Voigt absorption or the Lorentzian dispersion, etc. Furthermore, we shall write that “\(\Delta H_{pp}^0\) increases …” rather than “the value of \(\Delta H_{pp}^0\) increases …,” etc.

  2. Sigma-Aldrich, Merck KGaA, Darmstadt, Germany.

References

  1. Portis, A. M. (1953). Electronic Structure of F Centers: Saturation of the Electron Spin Resonance. Physical Review, 91, 1071.

    Article  CAS  Google Scholar 

  2. Wertheim, G. K., Butler, M. A., West, K. W., & Buchanan, D. N. E. (1974). Determination of the Gaussian and Lorentzian Content of Experimental Line Shapes. Review of Scientific instruments, 45, 1369–1371.

    Article  Google Scholar 

  3. v.d. Hulst, H. C., & Reesinck, J. J. M. (1947). Lin Breadths and Voigt Profiles. Astronomical Journal, 106, 121–127.

    Google Scholar 

  4. Westberg, J., Wang, J., & Axner, O. (2012). Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshap functions suitable for real-time curve fitting. Journal of Quantitative Spectroscopy & Radiative Transfer, 113, 2049–2057.

    Article  CAS  Google Scholar 

  5. Westberg, J., Wang, J., & Axner, O. (2014). Methodology for fast curve fitting to modulated Voigt dispersion lineshape functions. Journal of Quantitative Spectroscopy & Radiative Transfer, 133, 244–250.

    Article  CAS  Google Scholar 

  6. Bales, B. L. (1989). Inhomogeneously Broadened Spin-Label Spectra. In L. J. Berliner, J. Reuben (Ed.). Biological Magnetic Resonance (pp. 77–130). New York: Plenum.

    Google Scholar 

  7. Bales, B. L., Peric, M., & Lamy-Freund, M. T. (1998). Gaussian line broadening induced by unresolved proton hyperfine structure and by field modulation into the EPR spectrum of the proxyl spin probe. Journal of Magnetic Resonance, 132, 279–286.

    Article  CAS  PubMed  Google Scholar 

  8. Halpern, H. J., Peric, M., Yu, C., & Bales, B. L. (1993). Rapid Quantitation of Parameters from Inhomogeneously Broadened EPR Spectra. Journal of Magnetic Resonance, 103, 13–22.

    Article  CAS  Google Scholar 

  9. Bales, B. L., & Willett, D. (1984). EPR investigation of the intermediate spin exchange regime. Journal of Chemical Physics, 80, 2997–3004.

    Article  CAS  Google Scholar 

  10. De Tommasi, E., Castrillo, A., Casa, G., & Gianfrani, L. (2008). An efficient approximation for a wavelength-modulated 2nd harmonic lineshape from a Voigt absorption profile. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 168–175.

    Article  Google Scholar 

  11. Smirnov, A. I., & Belford, R. L. (1995). Rapid Quantitation from Inhomogeneously Broadened EPR Spectra by a Fast Convolution Algorithm. Journal of Magnetic Resonance A, , 113, 65–73.

    Article  CAS  Google Scholar 

  12. Liu, Y., Lin, J., Huang, G., Guo, Y., & Duan, C. (2001). Simple empirical analytical approximation to the Voigt profile. Journal of Optical Society of America B, 18, 666–672.

    Article  CAS  Google Scholar 

  13. Kielkopf, J. F. (1973). New approximation to the Voigt function with applications to spectral-line analysis. Journal of Optical Society of America, 63, 987–995.

    Article  Google Scholar 

  14. Shin, B. (2016). An analytical method for the deconvolution of Voigtian profiles. Applied Magnetic Resonance, 47, 429–452.

    Article  Google Scholar 

  15. Klug, C. S., Camenisch, T. G., Hubbell, W. L., & Hyde, J. S. (2005). Multiquantum EPR spectroscopy of spin-labled Arrestin K267c at 35 GHz. Biophysical Journal, 88, 3641–3647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fajer, P., & Marsh, D. (1983). Analysis of dispersion-mode saturation transfer ESR spectra. Application of model membranes. Journal of Magnetic Resonance, 55, 205–215.

    CAS  Google Scholar 

  17. Rinard, G. A., Quine, R. W., Ghim, B. T., Eaton, S. S., & Eaton, G. R. (1996). Dispersion and superheterodyne EPR using a bimodal resonator. Journal of Magnetic Resonance A, 122, 58–63.

    Article  CAS  Google Scholar 

  18. Hyde, J. S., Froncisz, W., & Kusumi, A. (1982). Dispersion electron spin resonance with the loop gap resonator.. Review of Scientific Instruments, 53, 1934–1937.

    Article  Google Scholar 

  19. Bales, B. L., & Peric, M. (1997). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide Free Radicals in liquids. Journal of Physical Chemistry B, 101, 8707–8716.

    Article  CAS  Google Scholar 

  20. Bales, B. L., & Peric, M. (2002). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide Free Radicals in Liquids 2. Extension to High Spin Exchange Frequencies and Inhomogeneously Broadened Spectra. Journal of Physical Chemistry A, 106, 4846–4854.

    Article  CAS  Google Scholar 

  21. Bales, B. L., Peric, M., & Dragutan, I. (2003). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide Free Radicals in Liquids 3. Extension to Five Hyperfine Lines. Additional Line Shifts Due to Re-encounters. Journal of Physical Chemistry A, 107, 9086–9098.

    Article  CAS  Google Scholar 

  22. Bales, B. L., Meyer, M., Smith, S., & Peric, M. (2008). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide-Free Radicals in Liquids 4. Test of a Method to Measure Re-encounter Rates in Liquids Employing 15N and 14N Nitroxide Spin Probes. Journal of Physical Chemistry A, 112, 2177–2181.

    Article  CAS  Google Scholar 

  23. Bales, B. L., Meyer, M., Smith, S., & Peric, M. (2009). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide-Free Radicals in Liquids 6. Separating Line Broadening due to Spin Exchange and Dipolar Interactions. Journal of Physical Chemistry A, 113, 4930–4940.

    Article  CAS  Google Scholar 

  24. Bales, B. L., Harris, F. L., Peric, M., & Peric, M. (2009). EPR Line Shifts and Line Shape Changes Due to Spin Exchange of Nitroxide-Free Radicals in Liquids 7. Singly Charged Surfactant Nitroxide. Journal of Physical Chemistry A, 113, 9295–9303.

    Article  CAS  Google Scholar 

  25. Bales, B. L., Meyer, M., & Peric, M. (2014). EPR Line Shifts and Line Shape Changes Due to Heisenberg Spin Exchange and Dipole–Dipole Interactions of Nitroxide Free Radicals in Liquids: 9. An Alternative Method to Separate the Effects of the Two Interactions Employing 15N and 14N. Journal of Physical Chemistry A, 118, 6154–6162.

    Article  CAS  Google Scholar 

  26. Salikhov, K. M. (2010). Contributions of Exchange and Dipole-Dipole Interactions to the Shape of EPR Spectra of Free Radicals in Diluted Sollutions. Applied Magnetic Resonance, 38, 237–256.

    Article  CAS  Google Scholar 

  27. Salikhov, K. M., Mambetov, A. Y., Bakirov, M. M., Khairuzhdinov, I. T., Galeev, R. T., Zaripov, R. B., & Bales, B. L. (2014). Spin Exchange Between Charged Paramagnetic Paritcles in Dilute Solutions. Applied Magnetic Resonance, 45, 911–940.

    Article  CAS  Google Scholar 

  28. Peric, M., Bales, B. L., & Peric, M. (2012). Electron Paramagnetic Line Shifts and Line Shape Changes Due to Heisenberg Spin Exchange and Dipole-Dipole Interactions of Nitroxide Free Radicals in Liquids 8. Further Experimental and Theoretical Efforts to Separate the Effects of the Two Interactions. Journal of Physical Chemistry A, 116, 2855–2866.

    Article  CAS  Google Scholar 

  29. Kurban, M. R., Peric, M., & Bales, B. L. (2008). Nitroxide spin exchange due to re-encounter collisions in a series of n-alkanes. Journal of Chemical Physics, 129, 064501–064510.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill.

    Google Scholar 

  31. Dobryakov, S. N., & Lebedev, Y. S. (1969). Analysis of Spectral Lines whose Profile is Describe by a Composition of Gaussian and Lorentz Profiles. Soviet Physics-Doklady, 13, 873.

    Google Scholar 

  32. Ludowise, P., Eaton, S. S., & Eaton, G. R. (1991). A Convenient Monitor of EPR Automatic Frequency Control (AFC) Function. Journal of Magnetic Resonance, 93, 410–412.

    CAS  Google Scholar 

  33. Smirnov, A. I. (2008). Post-processing of EPR spectra by convolution filtering: Calculation of a harmonics’ series and automatic separation of fast-motion components from spin label EPR spectra. Journal of Magnetic Resonance, 190, 154–159.

    Article  CAS  PubMed  Google Scholar 

  34. Tseitlin, M., Quine, R. W., Rinard, G. A., Eaton, S. S., & Eaton, G. R. (2010). Combining absorption and dispersion signals to improve singal-to-noise for rapid scan EPR imaging. Journal of Magnetic Resonance, 203, 305–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barney L. Bales.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s12013-017-0805-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bales, B.L. A Simple Analytical Approximation to an Inhomogeneously-Broadened Dispersion Spectrum. Application to Absorption-Dispersion Admixtures. Cell Biochem Biophys 75, 171–184 (2017). https://doi.org/10.1007/s12013-016-0760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0760-7

Keywords

Navigation