Skip to main content

Advertisement

Log in

Potential Role of Placental Klotho in the Pathogenesis of Preeclampsia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to analyze the placental expression and allele status of promoter region of Klotho in association with preeclampsia, which represents the most common hypertensive disease of pregnancy. Klotho mRNA and protein levels were determined using real-time PCR and Western blot, respectively, in placental tissue samples obtained from 34 patients affected with preeclampsia and 34 controls. A PCR-based genotyping analysis was carried out in the promoter region of Klotho gene. Moreover, expression levels of pluripotency markers, Nanog and Oct4, and telomere length were assessed using real-time PCR. Klotho mRNA and protein levels were reduced in preeclamptic placentas compared with controls. −744delA single-nucleotide polymorphism was significantly associated with preeclampsia. In pathological placentas, there was a downregulation of pluripotency markers and a reduced telomere length. This study is the first to evaluate the placental expression level of Klotho in association with preeclampsia. Further analyses will clarify its role in the pathogenesis of this pregnancy hypertensive disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Redman, C. W., & Sargent, I. L. (2005). Latest advances in understanding preeclampsia. Science, 308, 1592–1594.

    Article  CAS  PubMed  Google Scholar 

  2. Duley, L. (2003). Pre-eclampsia and the hypertensive disorders of pregnancy. British Medical Bulletin, 67, 161–176.

    Article  PubMed  Google Scholar 

  3. Thadhani, R., Ecker, J. L., Kettyle, E., Sandler, L., & Frigoletto, F. D. (2001). Pulse pressure and risk of preeclampsia: A prospective study. Obstetrics and Gynecology, 97, 515–520.

    CAS  PubMed  Google Scholar 

  4. Bosio, P. M., McKenna, P. J., Conroy, R., & O’Herlihy, C. (1999). Maternal central hemodynamics in hypertensive disorders of pregnancy. Obstetrics and Gynecology, 94, 978–984.

    CAS  PubMed  Google Scholar 

  5. Genbacev, O., Zhou, Y., Ludlow, J. W., & Fisher, S. J. (1997). Regulation of human placental development by oxygen tension. Science, 277, 1669–1672.

    Article  CAS  PubMed  Google Scholar 

  6. Rodie, V. A., Freeman, D. J., Sattar, N., & Greer, I. A. (2004). Pre-eclampsia and cardiovascular disease: Metabolic syndrome of pregnancy? Atherosclerosis, 175, 189–202.

    Article  CAS  PubMed  Google Scholar 

  7. Wagner, S. J., Barac, S., & Garovic, V. D. (2007). Hypertensive pregnancy disorders: Current concepts. The Journal of Clinical Hypertension, 9, 560–566.

    Article  PubMed  Google Scholar 

  8. Redman, C. W., Sacks, G. P., & Sargent, I. L. (1999). Preeclampsia: An excessive maternal inflammatory response to pregnancy. American Journal of Obstetrics and Gynecology, 180, 499–506.

    Article  CAS  PubMed  Google Scholar 

  9. Duckitt, K., & Harrington, D. (2005). Risk factors for pre-eclampsia at antenatal booking: Systematic review of controlled studies. BMJ, 330, 565.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Arngrímsson, R., Björnsson, H., & Geirsson, R. T. (1995). Analysis of different inheritance patterns in preeclampsia/eclampsia syndrome. Hypertension in Pregnancy, 14, 27–38.

    Article  Google Scholar 

  11. Founds, S. A., Conley, Y. P., Lyons-Weiler, J. F., Jeyabalan, A., Hogge, W. A., & Conrad, K. P. (2009). Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. Placenta, 30, 15–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Irgens, H. U., Reisaeter, L., Irgens, L. M., & Lie, R. T. (2001). Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. BMJ, 323, 1213–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Funai, E. F., Friedlander, Y., Paltiel, O., Tiram, E., Xue, X., Deutsch, L., & Harlap, S. (2005). Long-term mortality after preeclampsia. Epidemiology, 16, 206–215.

    Article  PubMed  Google Scholar 

  14. Wikström, A. K., Haglund, B., Olovsson, M., & Lindeberg, S. N. (2005). The risk of maternal ischaemic heart disease after gestational hypertensive disease. BJOG, 112, 1486–1491.

    Article  PubMed  Google Scholar 

  15. Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. J. (2007). Pre-eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta-analysis. BMJ, 335, 974.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Newstead, J., von Dadelszen, P., & Magee, L. A. (2007). Preeclampsia and future cardiovascular risk. Expert Review of Cardiovascular Therapy, 5, 283–294.

    Article  CAS  PubMed  Google Scholar 

  17. Rosing, U., Samsioe, G., Olund, A., Johansson, B., & Kallner, A. (1989). Serum levels of apolipoprotein A-I, A-II and HDL-cholesterol in second half of normal pregnancy and in pregnancy complicated by pre-eclampsia. Hormone and Metabolic Research, 21, 376–382.

    Article  CAS  PubMed  Google Scholar 

  18. Hubel, C. A., Lyall, F., Weissfeld, L., Gandley, R. E., & Roberts, J. M. (1998). Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metabolism, 47, 1281–1288.

    Article  CAS  PubMed  Google Scholar 

  19. Sattar, N., Bendomir, A., Berry, C., Shepherd, J., Greer, I. A., & Packard, C. J. (1997). Lipoprotein subfraction concentrations in preeclampsia: Pathogenic parallels to atherosclerosis. Obstetrics and Gynecology, 89, 403–408.

    Article  CAS  PubMed  Google Scholar 

  20. Wetzka, B., Winkler, K., Kinner, M., Friedrich, I., März, W., & Zahradnik, H. P. (1999). Altered lipid metabolism in preeclampsia and HELLP syndrome: Links to enhanced platelet reactivity and fetal growth. Seminars in Thrombosis and Hemostasis, 25, 455–462.

    Article  CAS  PubMed  Google Scholar 

  21. Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., et al. (1997). Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature, 390, 45–51.

    Article  CAS  PubMed  Google Scholar 

  22. Arking, D. E., Krebsova, A., Macek, M, Sr, Macek, M, Jr, Arking, A., Mian, I. S., et al. (2002). Association of human aging with a functional variant of klotho. Proceedings of the National Academy of Sciences of the United States of America, 99, 856–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arking, D. E., Becker, D. M., Yanek, L. R., Fallin, D., Judge, D. P., Moy, T. F., et al. (2003). KLOTHO allele status and the risk of early-onset occult coronary artery disease. American Journal of Human Genetics, 72, 1154–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shiraki-Iida, T., Aizawa, H., Matsumura, Y., Sekine, S., Iida, A., Anazawa, H., et al. (1998). Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Letters, 424, 6–10.

    Article  CAS  PubMed  Google Scholar 

  25. Saito, Y., Nakamura, T., Ohyama, Y., Suzuki, T., Iida, A., Shiraki-Iida, T., et al. (2000). In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochemical and Biophysical Research Communications, 276, 767–772.

    Article  CAS  PubMed  Google Scholar 

  26. Chang, Q., Hoefs, S., van der Kemp, A. W., Topala, C. N., Bindels, R. J., & Hoenderop, J. G. (2005). The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science, 310, 490–493.

    Article  CAS  PubMed  Google Scholar 

  27. Imura, A., Tsuji, Y., Murata, M., Maeda, R., Kubota, K., Iwano, A., et al. (2007). α-klotho as a regulator of calcium homeostasis. Science, 316, 1615–1618.

    Article  CAS  PubMed  Google Scholar 

  28. Kurosu, H., Yamamoto, M., Clark, J. D., Pastor, J. V., Nandi, A., Gurnani, P., et al. (2005). Suppression of aging in mice by the hormone klotho. Science, 308, 1829–1833.

    Article  Google Scholar 

  29. Starr, J. M., Shiels, P. G., Harris, S. E., Pattie, A., Pearce, M. S., Relton, C. L., & Deary, I. J. (2008). Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mechanisms of Ageing and Development, 129, 745–751.

    Article  CAS  PubMed  Google Scholar 

  30. Kirstetter, P., Anderson, K., Porse, B. T., Jacobsen, S. E., & Nerlov, C. (2006). Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nature Immunology, 7, 1048–1056.

    Article  CAS  PubMed  Google Scholar 

  31. ACOG Committee on Obstetric Practice. (2002). ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. American College of Obstetricians and Gynecologists. International Journal of Gynaecology and Obstetrics, 77, 67–75.

    Article  Google Scholar 

  32. Cawthon, R. M. (2002). Telomere measurement by quantitative PCR. Nucleic Acids Research, 30, e47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Matsumura, Y., Aizawa, H., Shiraki-Iida, T., Nagai, R., Kuro-o, M., & Nabeshima, Y. (1998). Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochemical and Biophysical Research Communications, 242, 626–630.

    Article  CAS  PubMed  Google Scholar 

  34. Kawano, K., Ogata, N., Chiano, M., Molloy, H., Kleyn, P., Spector, T. D., et al. (2002). Klotho gene polymorphisms associated with bone density of aged postmenopausal women. Journal of Bone and Mineral Research, 17, 1744–1751.

    Article  CAS  PubMed  Google Scholar 

  35. Imura, A., Iwano, A., Tohyama, O., Tsuji, Y., Nozaki, K., Hashimoto, N., et al. (2004). Secreted Klotho protein in sera and CSF: Implication for post-translational cleavage in release of Klotho protein from cell membrane. FEBS Letters, 565, 143–147.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshida, T., Fujimori, T., & Nabeshima, Y. (2002). Mediation of unusually high concentrations of 1,25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology, 143, 683–689.

    CAS  PubMed  Google Scholar 

  37. Yang, J., Matsukawa, N., Rakugi, H., Imai, M., Kida, I., Nagai, M., et al. (2003). Upregulation of cAMP is a new functional signal pathway of Klotho in endothelial cells. Biochemical and Biophysical Research Communications, 301, 424–429.

    Article  CAS  PubMed  Google Scholar 

  38. Takeshita, K., Yamamoto, K., Ito, M., Kondo, T., Matsushita, T., Hirai, M., et al. (2002). Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, “Klotho” mouse. Seminars in Thrombosis and Hemostasis, 28, 545–554.

    Article  CAS  PubMed  Google Scholar 

  39. Steinert, J. R., Wyatt, A. W., Jacob, R., & Mann, G. E. (2009). Redox modulation of Ca2+ signaling in human endothelial and smooth muscle cells in pre-eclampsia. Antioxidants & Redox Signaling, 11, 1149–1163.

    Article  CAS  Google Scholar 

  40. Anton, L., Merrill, D. C., Neves, L. A., Diz, D. I., Corthorn, J., Valdes, G., et al. (2009). The uterine placental bed renin-angiotensin system in normal and preeclamptic pregnancy. Endocrinology, 150, 4316–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D’Elia, A. V., Fabbro, D., Driul, L., Barillari, G., Marchesoni, D., & Damante, G. (2011). Plasminogen activator inhibitor-1 gene polymorphisms in pre-eclampsia. Seminars in Thrombosis and Hemostasis, 37, 97–105.

    Article  PubMed  Google Scholar 

  42. Staff, A. C., Dechend, R., & Pijnenborg, R. (2010). Learning from the placenta: Acute atherosis and vascular remodeling in preeclampsia-novel aspects for atherosclerosis and future cardiovascular health. Hypertension, 56, 1026–1034.

    Article  CAS  PubMed  Google Scholar 

  43. Roberts, J. M., & Cooper, D. W. (2001). Pathogenesis and genetics of preeclampsia. Lancet, 357, 53–56.

    Article  CAS  PubMed  Google Scholar 

  44. Shimada, T., Takeshita, Y., Murohara, T., Sasaki, K., Egami, K., Shintani, S., et al. (2004). Angiogenesis and vasculogenesis are impaired in the precocious-aging klotho mouse. Circulation, 110, 1148–1155.

    Article  PubMed  Google Scholar 

  45. Saito, Y., Yamagishi, T., Nakamura, T., Ohyama, Y., Aizawa, H., Suga, T., et al. (1998). Klotho protein protects against endothelial dysfunction. Biochemical and Biophysical Research Communications, 248, 324–329.

    Article  CAS  PubMed  Google Scholar 

  46. Mitobe, M., Yoshida, T., Sugiura, H., Shirota, S., Tsuchiya, K., & Nihei, H. (2005). Oxidative stress decreases klotho expression in a mouse kidney cell line. Nephron Experimental Nephrology, 101, e67–e74.

    Article  CAS  PubMed  Google Scholar 

  47. Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, 101, 17312–17315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu, H., Fergusson, M. M., Castilho, R. M., Liu, J., Cao, L., Chen, J., et al. (2007). Augmented Wnt signaling in a mammalian model of accelerated aging. Science, 317, 803–806.

    Article  CAS  PubMed  Google Scholar 

  49. Scheller, M., Huelsken, J., Rosenbauer, F., Taketo, M. M., Birchmeier, W., Tenen, D. G., & Leutz, A. (2006). Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation. Nature Immunology, 7, 1037–1047.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franca Saccucci.

Additional information

Monia Cecati and Stefano Raffaele Giannubilo have contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cecati, M., Giannubilo, S.R., Saccucci, F. et al. Potential Role of Placental Klotho in the Pathogenesis of Preeclampsia. Cell Biochem Biophys 74, 49–57 (2016). https://doi.org/10.1007/s12013-015-0710-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0710-9

Keywords

Navigation