Skip to main content
Log in

Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a poor patient survival. Expression of TGF-β1 is up-regulated in HCC and is thought to play a crucial role in the occurrence and development of HCC. However, the mechanism of TGF-β1-mediated facilitation of malignant growth and invasion remains unclear, although some previous studies highlighted a potential involvement of the connective tissue growth factor (CTGF). Here we demonstrate that the in vitro migration of the HCC cell line SMMC-7721 is increased in the presence of recombinant TGF-β1, and that this effect is reversed by the specific inhibitor SB431542. Furthermore, TGF-β1 treatment up-regulated the expression of its own mRNA as well as the expression of CTGF mRNA. The TGF-β1-stimulated migration of SMMC-7721 cells was diminished by siRNA silencing of CTGF. These in vitro observations were validated in a murine xenograft model. In particular, silencing of CTFG diminished the TGF-β1-induced tumorigenesis in experimental animals. In conclusion, TGF-β1 plays a critical role in HCC migration and invasion, and this effect is dependent on CTGF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2014). Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359–E386.

    Article  Google Scholar 

  2. Jiang, Y. F., Yang, Z. H., & Hu, J. Q. (2000). Recurrence or metastasis of HCC: Predictors, early detection and experimental antiangiogenic therapy. World Journal of Gastroenterology, 6, 61–65.

    PubMed  Google Scholar 

  3. Moore-Smith, L., & Pasche, B. (2011). TGFBR1 signaling and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 16, 89–95.

    Article  PubMed  Google Scholar 

  4. Xu, C. C., Wu, L. M., Sun, W., Zhang, N., Chen, W. S., & Fu, X. N. (2011). Effects of TGF-beta signaling blockade on human A549 lung adenocarcinoma cell lines. Molecular Medicine Reports, 4, 1007–1015.

    CAS  PubMed  Google Scholar 

  5. Liu, X. Q., Rajput, A., Geng, L., Ongchin, M., Chaudhuri, A., & Wang, J. (2011). Restoration of transforming growth factor-beta receptor II expression in colon cancer cells with microsatellite instability increases metastatic potential in vivo. Journal of Biological Chemistry, 286, 16082–16090.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Rossmanith, W., & Schulte-Hermann, R. (2001). Biology of transforming growth factor beta in hepatocarcinogenesis. Microscopy Research and Technique, 52, 430–436.

    Article  CAS  PubMed  Google Scholar 

  7. Morris, S. M., Baek, J. Y., Koszarek, A., Kanngurn, S., Knoblaugh, S. E., & Grady, W. M. (2012). Transforming growth factor-beta signaling promotes hepatocarcinogenesis induced by p53 loss. Hepatology, 55, 121–131.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Perez-Gomez, E., Del Castillo, G., Juan Francisco, S., Lopez-Novoa, J. M., Bernabeu, C., & Quintanilla, M. (2010). The role of the TGF-beta coreceptor endoglin in cancer. Scientific World Journal, 10, 2367–2384.

    Article  CAS  PubMed  Google Scholar 

  9. Giannelli, G., Fransvea, E., Marinosci, F., Bergamini, C., Colucci, S., Schiraldi, O., & Antonaci, S. (2002). Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. American Journal of Pathology, 161, 183–193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139, 871–890.

    Article  CAS  PubMed  Google Scholar 

  11. Grainger, D. J. (2004). Transforming growth factor beta and atherosclerosis: So far, so good for the protective cytokine hypothesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004(24), 399–404.

    Article  Google Scholar 

  12. Ji, G. Z., Wang, X. H., Miao, L., Liu, Z., Zhang, P., Zhang, F. M., & Yang, J. B. (2006). Role of transforming growth factor-beta1-smad signal transduction pathway in patients with hepatocellular carcinoma. World Journal of Gastroenterology, 12, 644–648.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Lin, S. L., Chen, R. H., Chen, Y. M., Chiang, W. C., Lai, C. F., Wu, K. D., & Tsai, T. J. (2005). Pentoxifylline attenuates tubulointerstitial fibrosis by blocking Smad3/4-activated transcription and profibrogenic effects of connective tissue growth factor. Journal of the American Society of Nephrology, 16, 2702–2713.

    Article  CAS  PubMed  Google Scholar 

  14. Kothapalli, D., & Grotendorst, G. R. (2000). CTGF modulates cell cycle progression in cAMP-arrested NRK fibroblasts. The Journal of Cellular Physiology, 182, 119–126.

    Article  CAS  PubMed  Google Scholar 

  15. Vorwerk, P., Wex, H., Hohmann, B., Oh, Y., Rosenfeld, R. G., & Mittler, U. (2000). CTGF (IGFBP-rP2) is specifically expressed in malignant lymphoblasts of patients with acute lymphoblastic leukaemia (ALL). British Journal of Cancer, 83, 756–760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mazzocca, A., Fransvea, E., Dituri, F., Lupo, L., Antonaci, S., & Giannelli, G. (2010). Down-regulation of connective tissue growth factor by inhibition of transforming growth factor beta blocks the tumor-stroma cross-talk and tumor progression in hepatocellular carcinoma. Hepatology, 51, 523–534.

    Article  CAS  PubMed  Google Scholar 

  17. Garcia, M. G., Bayo, J., Bolontrade, M. F., Sganga, L., Malvicini, M., Alaniz, L., et al. (2011). Hepatocellular carcinoma cells and their fibrotic microenvironment modulate bone marrow-derived mesenchymal stromal cell migration in vitro and in vivo. Molecular Pharmaceutics, 8, 1538–1548.

    Article  CAS  PubMed  Google Scholar 

  18. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Review Cancer, 6, 392–401.

    Article  CAS  Google Scholar 

  19. Brigstock, D. R. (2009). Strategies for blocking the fibrogenic actions of connective tissue growth factor (CCN2): From pharmacological inhibition in vitro to targeted siRNA therapy in vivo. Journal of Cell Communication and Signaling, 2009(3), 5–18.

    Article  Google Scholar 

  20. Piao, R. L., Brigstock, D. R., Zhu, J., Zhang, M. L., & Gao, R. P. (2012). Clinical significance of connective tissue growth factor in hepatitis B virus-induced hepatic fibrosis. World Journal of Gastroenterology, 18, 2280–2286.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Zeng, Z. J., Yang, L. Y., Ding, X., & Wang, W. (2004). Expressions of cysteine-rich61, connective tissue growth factor and Nov genes in hepatocellular carcinoma and their clinical significance. World Journal of Gastroenterology, 10, 3414–3418.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gao, R., Ball, D. K., Perbal, B., & Brigstock, D. R. (2004). Connective tissue growth factor induces c-fos gene activation and cell proliferation through p44/42 MAP kinase in primary rat hepatic stellate cells. Journal of Hepatology, 40, 431–438.

    Article  CAS  PubMed  Google Scholar 

  23. Gao, R. P., & Brigstock, D. R. (2009). Connective tissue growth factor hammerhead ribozyme attenuates human hepatic stellate cell function. World Journal of Gastroenterology, 2009(15), 3807–3813.

    Article  Google Scholar 

  24. Arnott, J. A., Nuglozeh, E., Rico, M. C., Arango-Hisijara, I., Odgren, P. R., Safadi, F. F., & Popoff, S. N. (2007). Connective tissue growth factor (CTGF/CCN2) is a downstream mediator for TGF-beta1-induced extracellular matrix production in osteoblasts. Journal of Cellular Physiology, 210, 843–852.

    Article  CAS  PubMed  Google Scholar 

  25. Maheswaran, T., & Rushbrook, S. M. (2012). Epithelial-mesenchymal transition and the liver: Role in hepatocellular carcinoma and liver fibrosis. Journal of Gastroenterology and Hepatology, 27, 418–420.

    Article  CAS  PubMed  Google Scholar 

  26. Kong, D., Li, Y., & Wang, Z. (2011). Sarkar FH (2011) Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers, 3, 716–729.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Chaffer, C. L., & Weinberg, R. A. (2011). A perspective on cancer cell metastasis. Science, 2011(331), 1559–1564.

    Article  Google Scholar 

  28. Ogunwobi, O. O., & Liu, C. (2012). Therapeutic and prognostic importance of epithelial-mesenchymal transition in liver cancers: Insights from experimental models. Critical Reviews in Oncology Hematology, 2012(83), 319–328.

    Article  Google Scholar 

  29. Ogunwobi, O. O., & Liu, C. (2011). Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clinical & Experimental Metastasis, 2011(28), 721–731.

    Article  Google Scholar 

  30. Liu, B. C., Li, M. X., Zhang, J. D., Liu, X. C., & Zhang, X. L. (2008). Phillips AO (2008) Inhibition of integrin-linked kinase via a siRNA expression plasmid attenuates connective tissue growth factor-induced human proximal tubular epithelial cells to mesenchymal transition. American Journal of Nephrology, 28, 143–151.

    Article  CAS  PubMed  Google Scholar 

  31. Shimo, T., Kubota, S., Yoshioka, N., Ibaragi, S., Isowa, S., Eguchi, T., et al. (2006). Pathogenic role of connective tissue growth factor (CTGF/CCN2) in osteolytic metastasis of breast cancer. Journal of Bone and Mineral Research, 21, 1045–1059.

    Article  CAS  PubMed  Google Scholar 

  32. Edwards, L. A., Woolard, K., Son, M. J., Li, A., Lee, J., Ene, C., et al. (2011). Effect of brain- and tumor-derived connective tissue growth factor on glioma invasion. Journal of the National Cancer Institute, 103, 1162–1178.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Gao, Q., Zhao, Y. J., Wang, X. Y., Guo, W. J., Gao, S., Wei, L., et al. (2014). Activating mutations in PTPN3 promote cholangiocarcinoma cell proliferation and migration and are associated with tumor recurrence in patients. Gastroenterology, 2014, 146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haizhou Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, S., Ma, W. et al. Transforming Growth Factor β1 Promotes Migration and Invasion of Human Hepatocellular Carcinoma Cells Via Up-Regulation of Connective Tissue Growth Factor. Cell Biochem Biophys 73, 775–781 (2015). https://doi.org/10.1007/s12013-015-0693-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-015-0693-6

Keywords

Navigation