Skip to main content

Advertisement

Log in

Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The autophagic process is the only known mechanism for mitochondrial turnover and it has been speculated that dysfunction of autophagy may result in mitochondrial error and cellular stress. Emerging investigations have provided new understanding of how autophagy of mitochondria (also known as mitophagy) is associated with cellular oxidative stress and its impact on neurodegeneration. This impaired autophagic function may be considered as a possible mechanism in the pathogenesis of several neurodegenerative disorders including Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington disease. It can be suggested that autophagy dysfunction along with oxidative stress is considered main events in neurodegenerative disorders. New therapeutic approaches have now begun to target mitochondria as a potential drug target. This review discusses evidence supporting the notion that oxidative stress and autophagy are intimately associated with neurodegenerative disease pathogenesis. This review also explores new approaches that can prevent mitochondrial dysfunction, improve neurodegenerative etiology, and also offer possible cures to the aforementioned neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

Abbreviations

AD:

Alzhiemers disease

PD:

Parkinson disease

ALS:

Amyotrophic lateral sclerosis

HD:

Huntington’s disease

ROS:

Reactive oxygen species

MS:

Multiple sclerosis

References

  1. Shacka, J. J., Roth, K. A., & Zhang, J. (2008). The autophagy–lysosomal degradation pathway: Role in neurodegenerative disease and therapy. Frontiers in Bioscience, 13, 718–736.

    PubMed  CAS  Google Scholar 

  2. Cherra, S. J, 3rd, & Chu, C. T. (2008). Autophagy in neuroprotection and neurodegeneration: A question of balance. Future Neurology, 3, 309–323.

    PubMed  PubMed Central  Google Scholar 

  3. Chinnery, P. F., & Schon, E. A. (2003). Mitochondria. Journal of Neurology, Neurosurgery and Psychiatry, 74, 1188–1199.

    PubMed  CAS  PubMed Central  Google Scholar 

  4. Jellinger, K. A. (2009). Recent advances in our understanding of neurodegeneration. Journal of Neural Transmission, 9, 1111–1162.

    Google Scholar 

  5. Hashimoto, M., Rockenstein, E., Crews, L., & Masliah, E. (2003). Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Medicine, 4, 21–36.

    PubMed  CAS  Google Scholar 

  6. Cardaioli, E., Sicurelli, F., Carluccio, M. A., Gallus, G. N., Da Pozzo, P., Mondelli, M., et al. (2012). A new thymidine phosphorylase mutation causing elongation of the protein underlies mitochondrial neurogastrointestinal encephalomyopathy. Journal of Neurology, 259, 172–174.

    PubMed  Google Scholar 

  7. Kamat, P. K., Tota, S., Shukla, R., Ali, S., Najmi, A. K., & Nath, C. (2011). Mitochondrial dysfunction: a crucial event in okadaic acid (ICV) induced memory impairment and apoptotic cell death in rat brain. Pharmacology, Biochemistry and Behavior, 100, 311–319.

    PubMed  CAS  Google Scholar 

  8. Gavin, P. D., Prescott, M., & Devenish, R. J. (2005). F1F0-ATP synthase complex interactions in vivo can occur in the absence of the dimer specific subunit. Journal of Bioenergetics and Biomembranes, 37, 55–66.

    PubMed  CAS  Google Scholar 

  9. Kim, I., Rodríguez-Enríquez, S., & Lemasters, J. J. (2007). Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics, 462, 245–253.

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Jing, K., & Lim, K. (2012). Why is autophagy important in human diseases? Experimental & Molecular Medicine, 44, 69–72.

    CAS  Google Scholar 

  11. Gottlieb, R. A., & Carreira, R. S. (2010). Autophagy in health and disease. American Journal of Physiology - Cell Physiology, 299, C203–C210.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J. I., Tanida, I., et al. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    PubMed  CAS  Google Scholar 

  13. Banerjee, R., Beal, M. F., & Thomas, B. (2010). Autophagy in neurodegenerative disorders: Pathogenic roles and therapeutic implications. Trends in Neuroscience, 33, 541–549.

    CAS  Google Scholar 

  14. Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience, 13, 805–811.

    PubMed  CAS  PubMed Central  Google Scholar 

  15. Moreira, P. I., Santos, R. X., Zhu, X., Lee, H. G., Smith, M. A., Casadesus, G., et al. (2010). Autophagy in Alzheimer’s disease. Expert Review of Neurotherapeutics, 10, 1209–1218.

    PubMed  Google Scholar 

  16. Yang, Y. P., Liang, Z. Q., Gu, Z. L., & Qin, Z. H. (2005). Molecular mechanism and regulation of autophagy. Acta Pharmacologica Sinica, 26, 1421–1434.

    PubMed  CAS  Google Scholar 

  17. Ravikumar, B., Stewart, A., Kita, H., Kato, K., Duden, R., & Rubinsztein, D. C. (2003). Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Human Molecular Genetics, 12, 985–994.

    PubMed  CAS  Google Scholar 

  18. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N., & Rubinsztein, D. C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. Journal of Biological Chemistry, 278, 25009–25013.

    PubMed  CAS  Google Scholar 

  19. Liu, B., Cheng, Y., Zhang, B., Bian, H. J., & Bao, J. K. (2009). Polygonatum cyrtonema lectin induces apoptosis and autophagy in human melanoma A375 cells through a mitochondria-mediated ROS-p38-p53 pathway. Cancer Letters, 275, 54–60.

    PubMed  CAS  Google Scholar 

  20. Chu, C. T., Plowey, E. D., Dagda, R. K., Hickey, R. W., Cherra, S. J, 3rd, & Clark, R. S. (2009). Autophagy in neurite injury and neurodegeneration: In vitro and in vivo models. Methods in Enzymology, 453, 217–249.

    PubMed  CAS  PubMed Central  Google Scholar 

  21. Bossy, B., Perkins, G., & Bossy-Wetzel, E. (2008). Clearing the brain’s cobwebs: The role of autophagy in neuroprotection. Current Neuropharmacology, 6, 97–101.

    PubMed  CAS  PubMed Central  Google Scholar 

  22. Filosto, M., Scarpelli, M., Cotelli, M. S., Vielmi, V., Todeschini, A., Gregorelli, V., et al. (2011). The role of mitochondria in neurodegenerative diseases. Journal of Neurology, 258, 1763–1774.

    PubMed  CAS  Google Scholar 

  23. Khan, M. U., Cheema, Y., Shahbaz, A. U., Ahokas, R. A., Sun, Y., Gerling, I. C., et al. (2012). Mitochondria play a central role in nonischemic cardiomyocyte necrosis: Common to acute and chronic stressor states. Pflugers Archiv, 464, 123–131.

    PubMed  CAS  PubMed Central  Google Scholar 

  24. Zheng, Y. Z., Berg, K. B., & Foster, L. J. (2009). Mitochondria do not contain lipid rafts, and lipid rafts do not contain mitochondrial proteins. Journal of Lipid Research, 50, 988–998.

    PubMed  CAS  PubMed Central  Google Scholar 

  25. Santos, J. M., & Kowluru, R. A. (2011). Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Investigative Ophthalmology & Visual Science, 52, 8791–8798.

    CAS  Google Scholar 

  26. Parsons, M. J., & Green, D. R. (2009). Mitochondria and apoptosis: a quick take on a long view. F1000 Biology Reports, 1, 17.

    PubMed  PubMed Central  Google Scholar 

  27. Palikaras, K., & Tavernarakis, N. (2012). Mitophagy in neurodegeneration and aging. Frontiers in Genetics, 3, 297.

    PubMed  PubMed Central  Google Scholar 

  28. Hagen, T., Lagace, C. J., Modica-Napolitano, J. S., & Aprille, J. R. (2003). Permeability transition in rat liver mitochondria is modulated by the ATP-Mg/Pi carrier. American Journal of Physiology: Gastrointestinal and Liver Physiology, 285, G274–G281.

    PubMed  CAS  Google Scholar 

  29. Wallace, D. C. (2005). Mitochondria and cancer: Warburg addressed. Cold Spring Harbor Symposia on Quantitative Biology, 70, 363–374.

    PubMed  CAS  Google Scholar 

  30. Karbowski, M. (2010). Mitochondria on guard: Role of mitochondrial fusion and fission in the regulation of apoptosis. Advances in Experimental Medicine and Biology, 687, 131–142.

    PubMed  CAS  Google Scholar 

  31. Langer, T., Kaser, M., Klanner, C., & Leonhard, K. (2001). AAA proteases of mitochondria: Quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochemical Society Transactions, 29, 431–436.

    PubMed  CAS  Google Scholar 

  32. Soubannier, V., McLelland, G. L., Zunino, R., Braschi, E., Rippstein, P., Fon, E. A., et al. (2012). A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Current Biology, 22, 135–141.

    PubMed  CAS  Google Scholar 

  33. Miwa, S., St-Pierre, J., Partridge, L., & Brand, M. D. (2003). Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radical Biology & Medicine, 35, 938–948.

    CAS  Google Scholar 

  34. Twig, G., Graf, S. A., Wikstrom, J. D., Mohamed, H., Haigh, S. E., Elorza, A., et al. (2006). Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. American Journal of Physiology Cell Physiology, 291, C176–C184.

    PubMed  CAS  Google Scholar 

  35. Twig, G., Elorza, A., Molina, A. J., Mohamed, H., Wikstrom, J. D., Walzer, G., et al. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 27, 433–446.

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Frieden, M., Arnaudeau, S., Castelbou, C., & Demaurex, N. (2005). Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2 + -ATPases. Journal of Biological Chemistry, 280, 43198–43208.

    PubMed  CAS  Google Scholar 

  37. Gruber, J., Fong, S., Chen, C. B., Yoong, S., Pastorin, G., Schaffer, S., et al. (2012). Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnology Advances. doi:10.1016/j.biotechadv.2012.09.005.

    PubMed  Google Scholar 

  38. Chen, J., Tang, X. Q., Zhi, J. L., Cui, Y., Yu, H. M., Tang, E. H., et al. (2006). Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway. Apoptosis, 11, 943–953.

    PubMed  CAS  Google Scholar 

  39. Tang, L., Zhang, Y., Jobson, H. E., Li, J., Stephenson, K. K., Wade, K. L., et al. (2006). Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Molecular Cancer Therapeutics, 5, 935–944.

    PubMed  CAS  Google Scholar 

  40. Lemasters, J. J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Research, 8, 3–5.

    PubMed  CAS  Google Scholar 

  41. Lin, M. T., & Beal, M. F. (2006). Alzheimer’s APP mangles mitochondria. Nature Medicine, 12, 1241–1243.

    PubMed  CAS  Google Scholar 

  42. Frazziano, G., Champion, H. C., & Pagano, P. J. (2012). NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone. American Journal of Physiology Heart and Circulatory Physiology, 302, H2166–H2177.

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Takahashi, E., Endoh, H., & Doi, K. (1999). Intracellular gradients of O2 supply to mitochondria in actively respiring single cardiomyocyte of rats. American Journal of Physiology, 276, H718–H724.

    PubMed  CAS  Google Scholar 

  44. McKenna, M. C. (2011). Glutamate dehydrogenase in brain mitochondria: Do lipid modifications and transient metabolon formation influence enzyme activity? Neurochemistry International, 59, 525–533.

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Nordberg, J., & Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radical Biology & Medicine, 31, 1287–1312.

    CAS  Google Scholar 

  46. Turrens, J. F. (2003). Mitochondrial formation of reactive oxygen species. Journal of Physiology, 552, 335–344.

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Lundberg, I. E. (2002). New possibilities to achieve increased understanding of disease mechanisms in idiopathic inflammatory myopathies. Current Opinion in Rheumatology, 14, 639–642.

    PubMed  Google Scholar 

  48. Burdon, R. H., Gill, V., Boyd, P. A., & Rahim, R. A. (1996). Hydrogen peroxide and sequence-specific DNA damage in human cells. FEBS Letters, 383, 150–154.

    PubMed  CAS  Google Scholar 

  49. Rubinsztein, D. C., DiFiglia, M., Heintz, N., Nixon, R. A., Qin, Z. H., Ravikumar, B., et al. (2005). Autophagy and its possible roles in nervous system diseases, damage and repair. Autophagy, 1, 11–22.

    PubMed  CAS  Google Scholar 

  50. Galluzzi, L., Blomgren, K., & Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Reviews Neuroscience, 10, 481–494.

    PubMed  CAS  Google Scholar 

  51. Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., & Rizzuto, R. (2008). Calcium and apoptosis: ER-mitochondria Ca2 + transfer in the control of apoptosis. Oncogene, 27, 6407–6418.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Zecchini, V., & Mills, I. G. (2009). Putting chromatin immunoprecipitation into context. Journal of Cellular Biochemistry, 107, 19–29.

    PubMed  CAS  Google Scholar 

  53. Rogawski, M. A., & Wenk, G. L. (2003). The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Reviews, 9, 275–308.

    PubMed  CAS  Google Scholar 

  54. Cardoso, S. M., Santana, I., Swerdlow, R. H., & Oliveira, C. R. (2004). Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. Journal of Neurochemistry, 89, 1417–1426.

    PubMed  CAS  Google Scholar 

  55. Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radical Biology & Medicine, 32, 1050–1060.

    CAS  Google Scholar 

  56. Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., & Markesbery, W. R. (2000). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience, 103, 373–383.

    Google Scholar 

  57. Maruszak, A., & Zekanowski, C. (2011). Mitochondrial dysfunction and Alzheimer’s disease. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 320–330.

    CAS  Google Scholar 

  58. Butler, D., Nixon, R. A., & Bahr, B. A. (2006). Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy, 2, 234–237.

    PubMed  CAS  Google Scholar 

  59. Nixon, R. A., Wegiel, J., Kumar, A., Yu, W. H., Peterhoff, C., Cataldo, A., et al. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. Neuropathology & Experimental Neurology, 64, 113–122.

    Google Scholar 

  60. Nixon, R. A. (2007). Autophagy, amyloidogenesis and Alzheimer disease. Journal of Cell Science, 120, 4081–4091.

    PubMed  CAS  Google Scholar 

  61. Kirik, D., Rosenblad, C., Burger, C., Lundberg, C., Johansen, T. E., Muzyczka, N., et al. (2002). Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. Journal of Neuroscience, 22, 2780–2791.

    PubMed  CAS  Google Scholar 

  62. Tian, L., Ma, L., Kaarela, T., & Li, Z. (2012). Neuroimmune crosstalk in the central nervous system and its significance for neurological diseases. Journal of Neuroinflammation, 9, 155.

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Battisti, C., Formichi, P., Radi, E., & Federico, A. (2008). Oxidative-stress-induced apoptosis in PBLs of two patients with Parkinson disease secondary to alpha-synuclein mutation. Journal of the Neurological Sciences, 267, 120–124.

    PubMed  CAS  Google Scholar 

  64. Alvarez-Erviti, L., Rodriguez-Oroz, M. C., Cooper, J. M., Caballero, C., Ferrer, I., Obeso, J. A., et al. (2010). Chaperone-mediated autophagy markers in Parkinson disease brains. Archives of Neurology, 67, 1464–1472.

    PubMed  Google Scholar 

  65. Rogaeva, E., Johnson, J., Lang, A. E., Gulick, C., Gwinn-Hardy, K., Kawarai, T., et al. (2004). Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Archives of Neurology, 61, 1898–1904.

    PubMed  Google Scholar 

  66. Yang, L., Xia, Y., Zhao, H., Zhao, J., & Zhu, X. (2006). Magnetic resonance imaging of transplanted neural stem cells in Parkinson disease rats. Journal of Huazhong University of Science and Technology (Medical Sciences), 26, 489–492.

    Google Scholar 

  67. Banerjee, R., Starkov, A. A., Beal, M. F., & Thomas, B. (2009). Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta, 7, 651–663.

    Google Scholar 

  68. Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. Journal of Cell Biology, 183, 795–803.

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Chu, C. T., Zhu, J., & Dagda, R. (2007). Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: Implications for neurodegeneration and cell death. Autophagy, 3, 663–666.

    PubMed  CAS  PubMed Central  Google Scholar 

  70. Dagda, R. K., Cherra, S. J, 3rd, Kulich, S. M., Tandon, A., Park, D., & Chu, C. T. (2009). Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. Journal of Biological Chemistry, 284, 13843–13855.

    PubMed  CAS  PubMed Central  Google Scholar 

  71. McBride, H. M. (2008). Parkin mitochondria in the autophagosome. Journal of Cell Biology, 183, 757–759.

    PubMed  CAS  PubMed Central  Google Scholar 

  72. Greenamyre, J. T., Sherer, T. B., Betarbet, R., & Panov, A. V. (2001). Complex I and Parkinson’s disease. IUBMB Life, 52, 135–141.

    PubMed  CAS  Google Scholar 

  73. Seet, R. C., Lee, C. Y., Lim, E. C., Tan, J. J., Quek, A. M., Chong, W. L., et al. (2010). Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radical Biology & Medicine, 48, 560–566.

    CAS  Google Scholar 

  74. Bender, A., Krishnan, K. J., Morris, C. M., Taylor, G. A., Reeve, A. K., Perry, R. H., et al. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature Genetics, 38, 515–517.

    PubMed  CAS  Google Scholar 

  75. Dalfo, E., & Ferrer, I. (2005). Alpha-synuclein binding to rab3a in multiple system atrophy. Neuroscience Letters, 380, 170–175.

    PubMed  CAS  Google Scholar 

  76. Murphy, B. M., Dandy, D. S., & Henry, C. S. (2009). Analysis of oxidative stress biomarkers using a simultaneous competitive/non-competitive micromosaic immunoassay. Analytica Chimica Acta, 640, 1–6.

    PubMed  CAS  PubMed Central  Google Scholar 

  77. Chen, C. Y., Jang, J. H., Park, M. H., Hwang, S. J., Surh, Y. J., & Park, O. J. (2007). Attenuation of Abeta-induced apoptosis of plant extract (Saengshik) mediated by the inhibition of mitochondrial dysfunction and antioxidative effect. Annals of the New York Academy of Sciences, 1095, 399–411.

    PubMed  Google Scholar 

  78. Dodson, M. W., & Guo, M. (2007). Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson’s disease. Current Opinion in Neurobiology, 17, 331–337.

    PubMed  CAS  Google Scholar 

  79. Pavese, N., Gerhard, A., Tai, Y. F., Ho, A. K., Turkheimer, F., Barker, R. A., et al. (2006). Microglial activation correlates with severity in Huntington disease: A clinical and PET study. Neurology, 66, 1638–1643.

    PubMed  CAS  Google Scholar 

  80. Gusella, J. F., & MacDonald, M. E. (1995). Huntington’s disease: CAG genetics expands neurobiology. Current Opinion in Neurobiology, 5, 656–662.

    PubMed  CAS  Google Scholar 

  81. Kegel, K. B., Kim, M., Sapp, E., McIntyre, C., Castano, J. G., Aronin, N., et al. (2000). Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. Journal of Neuroscience, 20, 7268–7278.

    PubMed  CAS  Google Scholar 

  82. Orr, A. L., Li, S., Wang, C. E., Li, H., Wang, J., Rong, J., et al. (2008). N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. Journal of Neuroscience, 28, 2783–2792.

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., et al. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature Neuroscience, 5, 731–736.

    PubMed  CAS  Google Scholar 

  84. Modugno, N., Curra, A., Giovannelli, M., Priori, A., Squitieri, F., Ruggieri, S., et al. (2001). The prolonged cortical silent period in patients with Huntington’s disease. Clinical Neurophysiology, 112, 1470–1474.

    PubMed  CAS  Google Scholar 

  85. Herishanu, Y. O., Parvari, R., Pollack, Y., Shelef, I., Marom, B., Martino, T., et al. (2009). Huntington disease in subjects from an Israeli Karaite community carrying alleles of intermediate and expanded CAG repeats in the HTT gene: Huntington disease or phenocopy? Journal of the Neurological Sciences, 277, 143–146.

    PubMed  CAS  Google Scholar 

  86. Tellez-Nagel, I., Johnson, A. B., & Terry, R. D. (1974). Studies on brain biopsies of patients with Huntington’s chorea. Journal of Neuropathology and Experimental Neurology, 33, 308–332.

    PubMed  CAS  Google Scholar 

  87. Hirano, M. (2008). VAPB: new genetic clues to the pathogenesis of ALS. Neurology, 70, 1161–1162.

    PubMed  Google Scholar 

  88. Martinez-Vicente, M., Talloczy, Z., Wong, E., Tang, G., Koga, H., Kaushik, S., et al. (2010). Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nature Neuroscience, 13, 567–576.

    PubMed  CAS  PubMed Central  Google Scholar 

  89. Kawamata, H., & Manfredi, G. (2010). Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mechanisms of Ageing and Development, 131, 517–526.

    PubMed  CAS  PubMed Central  Google Scholar 

  90. Julien, J. P. (2007). ALS: Astrocytes move in as deadly neighbors. Nature Neuroscience, 10, 535–537.

    PubMed  CAS  Google Scholar 

  91. Liu, B., Tewari, A. K., Zhang, L., Green-Church, K. B., Zweier, J. L., Chen, Y. R., et al. (2009). Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochimica et Biophysica Acta, 1794, 476–485.

    PubMed  CAS  PubMed Central  Google Scholar 

  92. Beckman, J. S., Estevez, A. G., Crow, J. P., & Barbeito, L. (2001). Superoxide dismutase and the death of motoneurons in ALS. Trends in Neurosciences, 24, S15–S20.

    PubMed  CAS  Google Scholar 

  93. Okamoto, K., Fujita, Y., & Mizuno, Y. (2010). Pathology of protein synthesis and degradation systems in ALS. Neuropathology, 30, 189–193.

    PubMed  Google Scholar 

  94. Li, B., Liu, X. Y., Li, Z., Bu, H., Sun, M. M., Guo, Y. S., et al. (2008). Effect of ALS IgG on motor neurons in organotypic spinal cord cultures. Canadian Journal of Neurological Sciences, 35, 220–225.

    PubMed  Google Scholar 

  95. Shi, P., Strom, A. L., Gal, J., & Zhu, H. (2010). Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport. Biochimica et Biophysica Acta, 1802, 707–716.

    PubMed  CAS  PubMed Central  Google Scholar 

  96. Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature, 362, 59–62.

    PubMed  CAS  Google Scholar 

  97. Roxburgh, R. H., Seaman, S. R., Masterman, T., Hensiek, A. E., Sawcer, S. J., Vukusic, S., et al. (2005). Multiple Sclerosis Severity Score: Using disability and disease duration to rate disease severity. Neurology., 64, 1144–1151.

    PubMed  CAS  Google Scholar 

  98. Noseworthy, J., Kappos, L., & Daumer, M. (2003). Competing interests in multiple sclerosis research. Lancet, 361, 350–351.

    PubMed  Google Scholar 

  99. Waxman, S. G. (2008). Axonal dysfunction in chronic multiple sclerosis: Meltdown in the membrane. Annals of Neurology, 63, 411–413.

    PubMed  Google Scholar 

  100. Mahad, D., Ziabreva, I., Lassmann, H., & Turnbull, D. (2008). Mitochondrial defects in acute multiple sclerosis lesions. Brain, 131, 1722–1735.

    PubMed  PubMed Central  Google Scholar 

  101. Young, E. A., Fowler, C. D., Kidd, G. J., Chang, A., Rudick, R., Fisher, E., et al. (2008). Imaging correlates of decreased axonal Na +/K + ATPase in chronic multiple sclerosis lesions. Annals of Neurology, 63, 428–435.

    PubMed  Google Scholar 

  102. Neymotin, A., Calingasan, N. Y., Wille, E., Naseri, N., Petri, S., Damiano, M., et al. (2011). Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis. Free Radical Biology & Medicine, 51, 88–96.

    CAS  Google Scholar 

  103. Stack, C., Ho, D., Wille, E., Calingasan, N. Y., Williams, C., Liby, K., et al. (2010). Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington’s disease. Free Radical Biology and Medicine, 49, 147–158.

    PubMed  CAS  PubMed Central  Google Scholar 

  104. Sauerbeck, A., Gao, J., Readnower, R., Liu, M., Pauly, J. R., Bing, G., et al. (2011). Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Experimental Neurology, 227, 128–135.

    PubMed  CAS  PubMed Central  Google Scholar 

  105. Ghosh, S., Patel, N., Rahn, D., McAllister, J., Sadeghi, S., Horwitz, G., et al. (2007). The thiazolidinedione pioglitazone alters mitochondrial function in human neuron-like cells. Molecular Pharmacology, 71, 1695–1702.

    PubMed  CAS  Google Scholar 

  106. Quintanilla, R. A., Jin, Y. N., Fuenzalida, K., Bronfman, M., & Johnson, G. V. (2008). Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. Journal of Biological Chemistry, 283, 25628–25637.

    PubMed  CAS  PubMed Central  Google Scholar 

  107. Albert, Y. Sun. (2010). Resveratrol as a therapeutic agent for neurodegenerative diseases. Molecular Neurobiology, 41, 375–383.

    Google Scholar 

  108. Ayasolla, K. R., Giri, S., Singh, A. K., & Singh, I. (2005). 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside (AICAR) attenuates the expression of LPS- and Aβ peptide-induced inflammatory mediators in astroglia. Journal of Neuroinflammation, 2, 21.

    PubMed  PubMed Central  Google Scholar 

  109. Orsucci, D., Mancuso, M., Ienco, E. C., LoGerfo, A., & Siciliano, G. (2011). Targeting mitochondrial dysfunction and neurodegeneration by means of coenzyme Q10 and its analogues. Current Medicinal Chemistry, 18, 4053–4064.

    PubMed  CAS  Google Scholar 

  110. Michelangelo, Mancuso, Daniele, Orsucci, Valeria, Calsolaro, Anna, Choub, & Gabriele, Siciliano. (2009). Coenzyme Q10 and neurological diseases. Pharmaceuticals, 2, 134–149.

    Google Scholar 

  111. Noe, N., Dillon, L., Lellek, V., Diaz, F., Hida, A., Moraes, C. T., et al. (2012). Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy. Mitochondrion, 12, 258–259.

    Google Scholar 

  112. Johri, A., Calingasan, N. Y., Hennessey, T. M., Sharma, A., Yang, L., Wille, E., et al. (2012). Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington’s disease. Human Molecular Genetics, 21, 1124–1137.

    PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants HL107640-NT.

Conflict of interest

Authors having no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Tyagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamat, P.K., Kalani, A., Kyles, P. et al. Autophagy of Mitochondria: A Promising Therapeutic Target for Neurodegenerative Disease. Cell Biochem Biophys 70, 707–719 (2014). https://doi.org/10.1007/s12013-014-0006-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-014-0006-5

Keywords

Navigation