Skip to main content
Log in

MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

During the development of obesity, adipose tissue releases a host of different adipokines and inflammatory cytokines, such as leptin, resistin, tumor necrosis factor α (TNF-α), Interleukin-6 (IL-6), and adiponectin, which mediate insulin resistance. Recently, some microRNAs (miRNAs) regulated by adiponectin were identified as novel targets for controlling adipose tissue inflammation. Therefore, the relationship between adipokines and miRNA is worth studying. MiR-335 is an adipogenesis-related miRNA and implicated in both fatty acid metabolism and lipogenesis. In this study, we focused on the association of miR-335 and adipokines, and examined the expression trend of miR-335 during human adipocyte differentiation. Our results showed that miR-335 is significantly upregulated with treatment of leptin, resistin, TNF-α, and IL-6 in human mature adipocytes, and its expression elevated in the process of adipocyte differentiation. Interestingly, the transcriptional regulation of miR-335 by these adipokines seems independent of its host gene (mesoderm-specific transcript homolog, MEST). Thus, we cloned and identified potential promoter of miR-335 within the intron of MEST. As a result, a fragment about 600-bp length upstream sequences of miR-335 had apparent transcription activity. These findings indicated a novel role for miR-335 in adipose tissue inflammation, and miR-335 might play an important role in the process of obesity complications via its own transcription mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Flier, J. S. (2004). Obesity wars: Molecular progress confronts an expanding epidemic. Cell, 116, 337–350.

    Article  CAS  PubMed  Google Scholar 

  2. Spiegelman, B. M., & Flier, J. S. (1996). Adipogenesis and obesity: Rounding out the big picture. Cell, 87, 377–389.

    Article  CAS  PubMed  Google Scholar 

  3. Maffei, M., Halaas, J., Ravussin, E., Pratley, R. E., Lee, G. H., Zhang, Y., et al. (1995). Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Medicine, 1, 1155–1161.

    Article  CAS  PubMed  Google Scholar 

  4. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., et al. (2001). The hormone resistin links obesity to diabetes. Nature, 409, 307–312.

    Article  CAS  PubMed  Google Scholar 

  5. Alexander, R., Lodish, H., & Sun, L. (2011). MicroRNAs in adipogenesis and as therapeutic targets for obesity. Expert Opinion on Therapeutic Targets, 15, 623–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ling, H. Y., Hu, B., Hu, X. B., Zhong, J., Feng, S. D., Qin, L., et al. (2012). MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Experimental and Clinical Endocrinology and Diabetes, 120, 553–559.

    Article  CAS  PubMed  Google Scholar 

  7. Yang, Y. M., Seo, S. Y., Kim, T. H., & Kim, S. G. (2012). Decrease of miR-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology, 56(6), 2209–2220.

    Article  CAS  PubMed  Google Scholar 

  8. Ge, Q., Gerard, J., Noel, L., Scroyen, I., & Brichard, S. M. (2012). MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology, 153, 5285–5296.

    Article  CAS  PubMed  Google Scholar 

  9. Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., et al. (2004). MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 279, 52361–52365.

    Article  CAS  PubMed  Google Scholar 

  10. Kajimoto, K., Naraba, H., & Iwai, N. (2006). MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA, 12, 1626–1632.

    Article  CAS  PubMed  Google Scholar 

  11. Lin, Q., Gao, Z., Alarcon, R. M., Ye, J., & Yun, Z. (2009). A role of miR-27 in the regulation of adipogenesis. FEBS Journal, 276, 2348–2358.

    Article  CAS  PubMed  Google Scholar 

  12. Nakanishi, N., Nakagawa, Y., Tokushige, N., Aoki, N., Matsuzaka, T., Ishii, K., et al. (2009). The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochemical and Biophysical Research Communications, 385, 492–496.

    Article  CAS  PubMed  Google Scholar 

  13. Esguerra, J. L., Bolmeson, C., Cilio, C. M., & Eliasson, L. (2011). Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One, 6, e18613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Despres, J. P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444, 881–887.

    Article  CAS  PubMed  Google Scholar 

  15. Iozzo, P. (2009). Viewpoints on the way to the consensus session: Where does insulin resistance start? The adipose tissue. Diabetes Care, 32(Suppl 2), S168–S173.

    Article  CAS  PubMed  Google Scholar 

  16. Wagoner, B., Hausman, D. B., & Harris, R. B. (2006). Direct and indirect effects of leptin on preadipocyte proliferation and differentiation. American Journal of Physiology–Regulatory Integrative and Comparative Physiology, 290, R1557–R1564.

    Article  CAS  Google Scholar 

  17. Liu, F., Yang, T., Wang, B., Zhang, M., Gu, N., Qiu, J., et al. (2008). Resistin induces insulin resistance, but does not affect glucose output in rat-derived hepatocytes. Acta Pharmacologica Sinica, 29, 98–104.

    Article  PubMed  Google Scholar 

  18. Wellen, K. E., Fucho, R., Gregor, M. F., Furuhashi, M., Morgan, C., Lindstad, T., et al. (2007). Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell, 129, 537–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kralisch, S., Klein, J., Lossner, U., Bluher, M., Paschke, R., Stumvoll, M., et al. (2005). Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. American Journal of Physiology: Endocrinology and Metabolism, 289, E586–E590.

    CAS  PubMed  Google Scholar 

  20. Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi, S., Kohda, T., Miyoshi, N., Kuroiwa, Y., Aisaka, K., Tsutsumi, O., et al. (1997). Human PEG1/MEST, an imprinted gene on chromosome 7. Human Molecular Genetics, 6, 781–786.

    Article  CAS  PubMed  Google Scholar 

  22. Friedman, J. M., & Halaas, J. L. (1998). Leptin and the regulation of body weight in mammals. Nature, 395, 763–770.

    Article  CAS  PubMed  Google Scholar 

  23. Silha, J. V., Krsek, M., Skrha, J. V., Sucharda, P., Nyomba, B. L., & Murphy, L. J. (2003). Plasma resistin, adiponectin and leptin levels in lean and obese subjects: Correlations with insulin resistance. European Journal of Endocrinology, 149, 331–335.

    Article  CAS  PubMed  Google Scholar 

  24. Kloting, N., Berthold, S., Kovacs, P., Schon, M. R., Fasshauer, M., Ruschke, K., et al. (2009). MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One, 4, e4699.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Way, J. M., Gorgun, C. Z., Tong, Q., Uysal, K. T., Brown, K. K., Harrington, W. W., et al. (2001). Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. Journal of Biological Chemistry, 276, 25651–25653.

    Article  CAS  PubMed  Google Scholar 

  26. Juan, C. C., Au, L. C., Fang, V. S., Kang, S. F., Ko, Y. H., Kuo, S. F., et al. (2001). Suppressed gene expression of adipocyte resistin in an insulin-resistant rat model probably by elevated free fatty acids. Biochemical and Biophysical Research Communications, 289, 1328–1333.

    Article  CAS  PubMed  Google Scholar 

  27. Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. Science, 259, 87–91.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, S., Yang, Y., & Wu, J. (2011). TNFalpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors. Biochemical and Biophysical Research Communications, 414, 618–624.

    Article  CAS  PubMed  Google Scholar 

  29. Ron, D., Brasier, A. R., McGehee, R. J., & Habener, J. F. (1992). Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). Journal of Clinical Investigation, 89, 223–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xing, H., Northrop, J. P., Grove, J. R., Kilpatrick, K. E., Su, J. L., & Ringold, G. M. (1997). TNF alpha-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARgamma without effects on Pref-1 expression. Endocrinology, 138, 2776–2783.

    CAS  PubMed  Google Scholar 

  31. Stouthard, J. M., Oude, E. R., & Sauerwein, H. P. (1996). Interleukin-6 enhances glucose transport in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications, 220, 241–245.

    Article  CAS  PubMed  Google Scholar 

  32. Ellingsgaard, H., Hauselmann, I., Schuler, B., Habib, A. M., Baggio, L. L., Meier, D. T., et al. (2011). Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature Medicine, 17, 1481–1489.

    Article  CAS  PubMed  Google Scholar 

  33. Shu, M., Zhou, Y., Zhu, W., Zhang, H., Wu, S., Chen, J., et al. (2012). MicroRNA 335 is required for differentiation of malignant glioma cells induced by activation of cAMP/protein kinase A pathway. Molecular Pharmacology, 81, 292–298.

    Article  CAS  PubMed  Google Scholar 

  34. McArdle, M. A., Finucane, O. M., Connaughton, R. M., McMorrow, A. M., & Roche, H. M. (2013). Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Frontiers in Endocrinology (Lausanne), 4, 52.

    Google Scholar 

  35. McGillicuddy, F. C., Chiquoine, E. H., Hinkle, C. C., Kim, R. J., Shah, R., Roche, H. M., et al. (2009). Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. Journal of Biological Chemistry, 284, 31936–31944.

    Article  CAS  PubMed  Google Scholar 

  36. Chung, S., Lapoint, K., Martinez, K., Kennedy, A., Boysen, S. M., & McIntosh, M. K. (2006). Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology, 147, 5340–5351.

    Article  CAS  PubMed  Google Scholar 

  37. Neville, M. J., Collins, J. M., Gloyn, A. L., McCarthy, M. I., & Karpe, F. (2011). Comprehensive human adipose tissue mRNA and microRNA endogenous control selection for quantitative real-time-PCR normalization. Obesity (Silver Spring), 19, 888–892.

    Article  CAS  Google Scholar 

  38. Nikonova, L., Koza, R. A., Mendoza, T., Chao, P. M., Curley, J. P., & Kozak, L. P. (2008). Mesoderm-specific transcript is associated with fat mass expansion in response to a positive energy balance. FASEB J, 22, 3925–3937.

    Article  CAS  PubMed  Google Scholar 

  39. Takahashi, M., Kamei, Y., & Ezaki, O. (2005). Mest/Peg1 imprinted gene enlarges adipocytes and is a marker of adipocyte size. American Journal of Physiology: Endocrinology and Metabolism, 288, E117–E124.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This Project was supported by Grants from the National Key Basic Research Program of China (2013CB530604), Program for Innovative Research Teams of Jiangsu Province (LJ201108), Nanjing Technological Development Program (201104013), and the Postgraduate Program for Innovative Research of Jiangsu Province Higher Education Institutions (CXLX12-0565).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Cui or Chenbo Ji.

Additional information

Lu Zhu and Ling Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

12013_2013_9708_MOESM1_ESM.tif

Supplementary material 1 (TIFF 395 kb). The construct of pTB-Cherry vector. This vector was designed for analyzing the promoter activity by observing red fluorescence under fluorescence microscope. We blocked TA minimal promoter (PTA) and replaced luciferase (Luc) gene using mCherry gene to form the 3861bp pTB-Cherry vector

Supplementary material 2 (DOC 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Chen, L., Shi, CM. et al. MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem Biophys 68, 283–290 (2014). https://doi.org/10.1007/s12013-013-9708-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9708-3

Keywords

Navigation