Skip to main content
Log in

Evaluation of Selected Flavonoids as Antiangiogenic, Anticancer, and Radical Scavenging Agents: An Experimental and In Silico Analysis

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Developing antiangiogenic agents using natural products has remained a significant hope in the mainstream of anticancer research. In the present investigation series of flavonoids possessing di-, tri-, tetra-, and penta-hydroxy substitutions were evaluated as antiangiogenic agents using in vivo choriallantoic membrane model. The MTT-based cytotoxicity against selected cancer cell lines was carried out to determine the anticancer potential. The kinetics of free radical scavenging activities of these compounds was demonstrated using 2,2-diphenyl-1-picryl hydrazine (DPPH) and superoxide anion radicals (SORs). To understand the possible antiangiogenic mechanism, the selected flavonoids were docked in silico onto the proangiogenic peptides such as vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF-1α), and vascular endothelial growth factor receptor-2 (VEGFR2) from human origin. The results of the study shows that amongst the tested flavonoids, genistein (87.1%), kaempferol, (86.3%), and quercetin (84.7%) were found to be effective inhibitors of angiogenesis in CAM model. The antiangiogenic, cytotoxic, and antioxidant activities are discussed in light of structure–activity relationship using in silico approach and other drug-related properties were also calculated using BioMed CAChe V. 6.1.10. The results of the present study focus the isoflavone genistein, kaempferol, and quercetin as lead molecules for designing novel anti-tumor/antioxidant agents targeting angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auerbach, R., Lewis, R., Shinners, B., Kubai, L., & Akhtar, N. (2003). Angiogenesis assays: A critical overview. Clinical Chemistry, 49(1), 32–40.

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature, 42, 932–936.

    Article  Google Scholar 

  3. Plate, K. H., Breier, G., Weich, H. A., & Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 359, 845–848.

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara, N., & Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocrine Reviews, 18, 4–25.

    Article  PubMed  CAS  Google Scholar 

  5. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407, 249–257.

    Article  PubMed  CAS  Google Scholar 

  6. Brekken, R. A., Overholser, J. P., Stastny, V. A., Waltenberger, J., Minna, J. D., & Thorpe, P. E. (2000). Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activities by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer Research, 60, 5117–5124.

    PubMed  CAS  Google Scholar 

  7. Borgstrom, P., Bourdon, M. A., Hillan, K. J., Sriramarao, P., & Ferrara, N. (1998). Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate, 35, 1–10.

    Article  PubMed  CAS  Google Scholar 

  8. Angelov, L., Salhia, B., Roncari, L., McMahon, G., & Guha, A. (1999). Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomas. Cancer Research, 59, 5536–5541.

    PubMed  CAS  Google Scholar 

  9. Zhong, H., De Marzo, A. M., Laughner, E., Lim, M., Hilton, D. A., Zagzag, D., et al. (1999). Overexpression of hypoxia-inducible factor-1 alpha in common human cancers and their metastases. Cancer Research, 59, 5830–5835.

    PubMed  CAS  Google Scholar 

  10. Maxwell, P. H., Dachs, G. U., Gleadle, J. M., Nicholls, L. G., Harris, A. L., Stratford, I. J., et al. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 94, 8104–8109.

    Article  PubMed  CAS  Google Scholar 

  11. Singh, R., Singh, R. K., Mahdi, A. A., Misra, S., Rai, S. P., Singh, D., et al. (1998). Studies on circadian periodicity of urinary corticoids in carcinoma of the breast. In Vivo, 2(1), 69–73.

    Google Scholar 

  12. Singh, R., Singh, R. K., Mahdi, A. A., Singh, R. K., Kumar, A. K., Tripathi, A., et al. (2003). Circadian periodicity of plasma lipid peroxides and other antioxidants as putative markers in gynecological malignancies. In Vivo, 17, 593–600.

    PubMed  CAS  Google Scholar 

  13. Romero, I., Paez, A., Femelo, A., Lujan, M., & Berenguer, A. (2002). Polyphenols in red wine inhibit the proliferation and induce apoptosis of LNCaP cells. British Journal of Urology International, 89, 950–954.

    Article  CAS  Google Scholar 

  14. Choi, Y. H., Zhang, L., Lee, W. H., & Park, K. Y. (1998). Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells. International Journal of Oncology, 13, 391–396.

    PubMed  CAS  Google Scholar 

  15. Davis, J. N., Singh, B., Bhuiyan, M., & Sarkar, F. H. (1998). Genistein-induced upregulation of p21 WAF1, downregulation of cyclin B and induction of apoptosis in prostate cancer cells. Nutrition and Cancer, 32, 123–131.

    Article  PubMed  CAS  Google Scholar 

  16. Lian, F., Bhuiyan, M., Li, Y. M., Wall, N., Kraut, M., & Sarkar, F. H. (1998). Genistein-induced G2-M arrest, p21WAF1 upregulation and apoptosis in a nonsmall-cell lung cancer cell line. Nutrition and Cancer, 31, 184–191.

    Article  PubMed  CAS  Google Scholar 

  17. Matsukawa, Y., Mami, N., Sakai, T., Satomi, Y., Yoshida, M., Matsumoto, K., et al. (1993). Genistein arrests cell cycle progression at G2-M. Cancer Research, 53, 1328–1331.

    PubMed  CAS  Google Scholar 

  18. Middleton, E., Kandaswami, C., & Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and Cancer. Pharmacological Reviews, 52, 673–751.

    PubMed  CAS  Google Scholar 

  19. Fotsis, T., Pepper, M. S., Aktas, E., Breit, S., Rasku, S., Adlerkreutz, H., et al. (1997). Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Research, 57, 2916–2921.

    PubMed  CAS  Google Scholar 

  20. Gacche, R., Shegokar, H., Gond, D., Jadhav, A., & Ghole, V. (2010). Effect of hydroxyl substitution of flavone on angiogenesis and free radical scavenging activities: A structure-activity relationship studies using computational tools. European Journal of Pharmaceutical Sciences, 39, 37–44.

    Article  Google Scholar 

  21. Park, K., Lim, D., Park, S. D., Kim, M. Y., & Kim, Y. (2004). Angiogenesis inhibitor derived from angiostatin active sites. Bulletin of the Korean Chemical Society, 25(9), 1331–1335.

    Article  CAS  Google Scholar 

  22. Soucy, N. V., Ihnat, M. A., Kamat, C. D., Hess, L., Mark, J. P., Klei, L. R., et al. (2003). Arsenic stimulates angiogenesis and tumorigenesis in vivo. Toxicological Sciences, 76, 271–279.

    Article  PubMed  CAS  Google Scholar 

  23. Quıntero, A., Pelcastre, A., & Solano, J. D. (1999). Antitumoral activity of new pyrimidine derivatives of sesquiterpene lactones. Journal of Pharmaceutical Sciences, 2, 108–112.

    Google Scholar 

  24. Mantani, N., Imanishiı, N., Kawamata, H., Terasawa, K., & Ochiai, H. (2001). Inhibitory effect of (+)-catechin on the growth of influenza A/PR/8 virus in MDCK cells. Planta Medica, 67, 240–243.

    Article  PubMed  CAS  Google Scholar 

  25. Mosmann, T. (1983). Rapid colorimetric assay for cellular grow and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  26. Kawase, M., Motohashi, N., Satoh, K., Sakagami, H., Nakashima, H., Tanı, S., et al. (2003). Biological activity of Persimmon (Diospyros kaki) peel extracts. Phytotherapy Research, 17, 495–500.

    Article  PubMed  Google Scholar 

  27. Liu, F. V., Ooi, E. C., & Chang, S. T. (1997). Free radical scavenging activity of mushroom polysaccharide extract. Life Sciences, 60, 763–771.

    Article  PubMed  CAS  Google Scholar 

  28. Gacche, R. N., Dhole, N. A., Kamble, S. G., & Bandgar, B. P. (2007). In vitro evaluation of selected chalcones for antioxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 23(1), 28–31.

    Article  Google Scholar 

  29. Thompson, M. A. (2004). ArgusLab 4.0.1. Seattle, WA: Planaria Software LLC.

    Google Scholar 

  30. Wiesmann, C., Christinger, H. W., Cochran, A. G., Cunningham, B. C., Fairbrother, W. J., Keenan, C. J., et al. (1998). Crystal structure of the complex between VEGF and a receptor-blocking peptide. Biochemistry, 37, 17765–17772.

    Article  PubMed  CAS  Google Scholar 

  31. McDonough, M. A., McNeill, L. A., Tilliet, M., Papamicael, C. A., Chen, Q. Y., Banerji, B., et al. (2005). Selective inhibition of factor inhibiting hypoxia-inducible factor. Journal of the American Chemical Society, 127, 7680–7681.

    Article  PubMed  CAS  Google Scholar 

  32. Miyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Philippe, R. J., et al. (2005). Novel 4-amino-furo [2, 3-d] pyrimidines as Tie-2 and VEGFR2 dual inhibitors. Bioorganic and Medicinal Chemistry Letters, 15, 2203–2207.

    Article  PubMed  CAS  Google Scholar 

  33. Staton, C. A., Stribbling, S. M., Tazzyman, S., Hughes, R., Brown, N. J., & Lewis, C. E. (2004). Current methods for assaying angiogenesis in vitro and in vivo. International Journal of Experimental Pathology, 85, 233–248.

    Article  PubMed  CAS  Google Scholar 

  34. Chan, T. S., Galati, G., Pannala, A. S., Rice-Evans, C., & O’Brien, P. J. (2003). Simultaneous detection of the antioxidant and pro-oxidant activity of dietary polyphenolics in a peroxidase system. Free Radical Research, 37, 787–794.

    Article  PubMed  CAS  Google Scholar 

  35. Nijveldt, R. J., Nood, E., Hoorn, D. E. C., Boelens, P. G., Norren, K., & Leeuwen, P. A. M. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinical Nutrition, 74, 418–425.

    PubMed  CAS  Google Scholar 

  36. Kim, M. H. (2003). Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. Journal of Cellular Biochemistry, 89(3), 529–538.

    Article  PubMed  CAS  Google Scholar 

  37. Yuki, H., Kiyoshi, E., Yoko, Y., Setsuko, K., Yasuaki, H., Yoshiteru, I., et al. (2003). Specific inhibition of hypoxia-inducible factor (HIF)-1a activation and vascular endothelial growth factor (VEGF) production by flavonoids. Biological and Pharmaceutical Bulletin, 26(10), 1379–1383.

    Article  Google Scholar 

  38. Lee, J. Y., Jeong, K. W., Kim, W., Heo, Y. S., & Kim, Y. (2009). Binding models of flavonols to human vascular endothelial growth factor receptor 2. Bulletin of the Korean Chemical Society, 30(9), 2083–2086.

    Article  CAS  Google Scholar 

  39. Mojzis, J., Varinska, L., Mojzisova, G., Kostova, I., & Mirossay, L. (2008). Antiangiogenic effects of flavonoids and chalcones. Pharmacological Research, 57(4), 259–265.

    Article  PubMed  CAS  Google Scholar 

  40. Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: A versatile source of anticancer drugs. Pharmacognosy Reviews, 5, 1–12.

    Article  CAS  Google Scholar 

  41. Kuntz, S., Wenzel, U., & Daniel, H. (2009). Comparative analysis of the effects of flavonoids on proliferation, cytotoxicity and apoptosis in human colon cancer cell lines. European Journal Nutrition, 38, 133–142.

    Article  Google Scholar 

  42. Katyal, S., Gao, Z., Liu, R. Z., & Godbout, R. (2007). Evolutionary conservation of alternative splicing in chicken. Cytogenetic and Genome Research, 117, 146–157.

    Article  PubMed  CAS  Google Scholar 

  43. Camenisch, G., Tini, M., Chilov, D., Kvietikova, I., Srinivas, V., Caro, J., et al. (1999). General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia inducible factor 1α. FASEB Journal, 13, 81–88.

    PubMed  CAS  Google Scholar 

  44. Jones, P. F., McClain, J., Robinson, D. M., Seto, T. N., & Yancopoulos, G. D. (1999). Identification and characterization of chicken cDNAs encoding the endothelial cell-specific receptor tyrosine kinase Tie2 and its ligands, the angiopoietins. Angiogenesis, 2(4), 357–364.

    Article  Google Scholar 

  45. Shibuya, M. (2002). Vascular endothelial growth factor receptor family gene: When did the three genes phylogenetically segregate? Journal of Biological Chemistry, 383(10), 1573–1579.

    Article  CAS  Google Scholar 

  46. Schweigerer, L., Christeleit, K., Fleischmann, G., Adlercreutz, H., Wahala, K., Hase, T., et al. (1992). Identification in human urine of a natural growth inhibitor for cells derived from solid pediatric tumors. European Journal of Clinical Investigation, 22, 260–264.

    Article  PubMed  CAS  Google Scholar 

  47. Fang, J., Xia, C., Cao, Z., Zheng, J. Z., Reed, E., & Jiang, B. H. (2005). Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB Journal, 19, 342–353.

    Article  PubMed  CAS  Google Scholar 

  48. Fu, B., Xue, J., Li, Z., Shi, X., Jiang, B. H., & Fang, J. (2007). Chrysin inhibits expression of hypoxia-inducible factor-1A through reducing hypoxia-inducible factor-1A stability and inhibiting its protein synthesis. Molecular Cancer Therapeutics, 6(1), 221–226.

    Article  Google Scholar 

  49. Korkina, L. G., & Afanasev, I. B. (1997). Antioxidant and chelating properties of flavonoids. Advances in Pharmacology, 38, 151–163.

    Article  PubMed  CAS  Google Scholar 

  50. Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine, 16, 845–850.

    Article  PubMed  CAS  Google Scholar 

  51. Farkas, O., Jakus, J., & Héberger, J. (2004). Quantitative structure-antioxidant activity relationships of flavonoid compounds. Molecules, 9, 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  52. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radical Biology and Medicine, 20(7), 933–956.

    Article  PubMed  CAS  Google Scholar 

  53. Pannala, A. S., Chan, T. S., O’Brien, P. J., & Rice-Evans, C. A. (2001). Flavonoid B-ring chemistry and antioxidant activity: Fast reaction kinetics. Biochemical and Biophysical Research Communications, 282, 1161–1168.

    Article  Google Scholar 

  54. Burda, S., & Oleszek, W. (2001). Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and Food Chemistry, 49, 2774–2779.

    Article  PubMed  CAS  Google Scholar 

  55. Kanadaswami, C., Lee, L.-T., & Lee, P.-P. (2005). The antitumor activities of flavonoids. In Vivo, 19(5), 895–909.

    PubMed  CAS  Google Scholar 

  56. Yuan, Z. P., Chen, L. J., & Fan, L. Y. (2006). Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clinical Cancer Research, 12(10), 3193–3199.

    Article  PubMed  CAS  Google Scholar 

  57. Karelson, M., & Lobanov, V. S. (1996). Quantum-chemical descriptors in QSAR/QSPR studies. Chemical Reviews, 96, 1027–1043.

    Article  PubMed  CAS  Google Scholar 

  58. Gacche, R., Khsirsagar, M., Kamble, S., Bandagar, B., Dhole, N., Shisode, K., et al. (2008). Antioxidant and anti-inflammatory related activities of selected synthetic chalcones: Structure-activity relationship studies using computational tools. Chemical and Pharmaceutical Bulletin, 56(7), 897–901.

    Article  CAS  Google Scholar 

  59. Honorio, K. M., & Da Silva, A. B. F. (2003). An AM1 study on the electron-donating and electron accepting character of biomolecules. International Journal of Quantum Chemistry, 95(2), 126–132.

    Article  CAS  Google Scholar 

  60. Tuppurainen, K., Lotjonen, S., Laatikainen, R., Vartiainen, T., Maran, U., Strandberg, M., et al. (1991). About the mutagenicity of chlorine-substituted furanones and halopropenals—a QSAR study using molecular orbital indexes. Mutation Research, 247, 97–202.

    Article  PubMed  CAS  Google Scholar 

  61. Pearson, R. G., & Songstad, J. (1967). Application of the principle of hard and soft acids and bases to organic chemistry. Journal of the American Chemical Society, 89, 1827–1836.

    Article  CAS  Google Scholar 

  62. Vemulapalli V, Ghilzai NM, Jasti BR (2007) Physicochemical characteristics that influence the transport of drugs across intestinal barrier. AAPS Newsmagazine 18.

  63. Wang, J., Hou, T., & Xu, X. (2009). Aqueous solubility prediction based on weighted atom type counts and solvent accessible surface areas. Journal of Chemical Information and Modelling, 49, 571–581.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Council of Scientific & Industrial Research (CSIR), Human Resource Development Group, New Delhi for financial assistance (01(2249)/08/EMR-II), DSG thanks CSIR for SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh N. Gacche.

Additional information

All authors have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gacche, R.N., Shegokar, H.D., Gond, D.S. et al. Evaluation of Selected Flavonoids as Antiangiogenic, Anticancer, and Radical Scavenging Agents: An Experimental and In Silico Analysis. Cell Biochem Biophys 61, 651–663 (2011). https://doi.org/10.1007/s12013-011-9251-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9251-z

Keywords

Navigation