Skip to main content
Log in

Temperature-dependent Activation of Neurons by Continuous Near-infrared Laser

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Optical control of neuronal activity has a number of advantages over electrical methods and can be conveniently applied to intact individual neurons in vivo. In this study, we demonstrated an experimental approach in which a focused continuous near-infrared (CNI) laser beam was used to activate single rat hippocampal neurons by transiently elevating the local temperature. Reversible changes in the amplitude and kinetics of neuronal voltage-gated Na and K channel currents were recorded following irradiation with a single-mode 980 nm CNI-laser. Using single-channel recordings under controlled temperatures as a means of calibration, it was estimated that temperature at the neuron rose by 14°C in 500 ms. Computer simulation confirmed that small temperature changes of about 5°C were sufficient to produce significant changes in neuronal excitability. The method should be broadly applicable to studies of neuronal activity under physiological conditions, in particular studies of temperature-sensing neurons expressing thermoTRP channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nicholls, J. G. (2001). From neuron to brain (4th ed.). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  2. Herlitze, S., & Landmesser, L. T. (2007). New optical tools for controlling neuronal activity. Current Opinion in Neurobiology, 17(1), 87–94.

    Article  PubMed  CAS  Google Scholar 

  3. Callaway, E. M., & Yuste, R. (2002). Stimulating neurons with light. Current Opinion in Neurobiology, 12(5), 587–592.

    Article  PubMed  CAS  Google Scholar 

  4. Plaghki, L., & Mouraux, A. (2003). How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Neurophysiologie Clinique, 33(6), 269–277.

    Article  PubMed  CAS  Google Scholar 

  5. Jacques, S. L. (1992). Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surgical Clinics of North America, 72(3), 531–558.

    PubMed  CAS  Google Scholar 

  6. Turro, N. J. (1978). Modern molecular photochemistry. Menlo Park, CA: Benjamin/Cummings Publishing Co., Inc.

    Google Scholar 

  7. Middendorf, T. R., & Aldrich, R. W. (2000). Effects of ultraviolet modification on the gating energetics of cyclic nucleotide-gated channels. Journal of General Physiology, 116(2), 253–282.

    Article  PubMed  CAS  Google Scholar 

  8. Middendorf, T. R., Aldrich, R. W., & Baylor, D. A. (2000). Modification of cyclic nucleotide-gated ion channels by ultraviolet light. Journal of General Physiology, 116(2), 227–252.

    Article  PubMed  CAS  Google Scholar 

  9. Schwarz, W., & Fox, J. M. (1977). Ultraviolet-induced alterations of the sodium inactivation in myelinated nerve fibres. Journal of Membrane Biology, 36(4), 297–310.

    PubMed  CAS  Google Scholar 

  10. Vogel, A., & Venugopalan, V. (2003). Mechanisms of pulsed laser ablation of biological tissues. Chemical Reviews, 103(2), 577–644.

    Article  PubMed  CAS  Google Scholar 

  11. Hirase, H., et al. (2002). Multiphoton stimulation of neurons. Journal of Neurobiology, 51(3), 237–247.

    Article  PubMed  Google Scholar 

  12. Wells, J., et al. (2007). Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophysical Journal, 93(7), 2567–2580.

    Article  PubMed  CAS  Google Scholar 

  13. Wells, J., et al. (2005). Optical stimulation of neural tissue in vivo. Optics Letters, 30(5), 504–506.

    Article  PubMed  Google Scholar 

  14. Patapoutian, A., et al. (2003). ThermoTRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews. Neuroscience, 4(7), 529–539.

    Article  PubMed  CAS  Google Scholar 

  15. Kay, A. R., & Wong, R. K. (1986). Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. Journal of Neuroscience Methods, 16(3), 227–238.

    Article  PubMed  CAS  Google Scholar 

  16. Tsekrekos, C. P., et al. (2007). Near-field intensity pattern at the output of silica-based graded-index multimode fibers under selective excitation with a single-mode fiber. Optics Express, 15(7), 3656–3664.

    Article  CAS  PubMed  Google Scholar 

  17. Caterina, M. J., et al. (1997). The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature, 389(6653), 816–824.

    Article  PubMed  CAS  Google Scholar 

  18. Cheng, W., et al. (2007). Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. Journal of General Physiology, 129(3), 191–207.

    Article  PubMed  CAS  Google Scholar 

  19. Sigworth, F. J., & Sine, S. M. (1987). Data transformations for improved display and fitting of single-channel dwell time histograms. Biophysical Journal, 52(6), 1047–1054.

    PubMed  CAS  Google Scholar 

  20. Hodgkin, A., & Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.

    PubMed  CAS  Google Scholar 

  21. Puglisi, J. L., & Bers, D. M. (2001). LabHEART: An interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology. Cell Physiology, 281(6), C2049–C2060.

    PubMed  CAS  Google Scholar 

  22. Kirsch, G. E., & Sykes, J. S. (1987). Temperature dependence of Na currents in rabbit and frog muscle membranes. Journal of General Physiology, 89(2), 239–251.

    Article  PubMed  CAS  Google Scholar 

  23. Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426(6966), 517–524.

    Article  PubMed  CAS  Google Scholar 

  24. Hall, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to 200-um wavelength region. Applied Optics, 12, 555–563.

    Article  Google Scholar 

  25. Conway, J. M., Norris, K. H., & Bodwell, C. (1984). A new approach for the estimation of body composition: Infrared interactance. The American Journal of Clinical Nutrition, 40, 1123–1130.

    PubMed  CAS  Google Scholar 

  26. Walrafen, G. E., et al. (1996). Raman OD-stretching overtone spectra from liquid D2O between 22 and 152°C. Journal of Physical Chemistry, 100, 1381–1391.

    Article  CAS  Google Scholar 

  27. DeCoursey, T. E., & Cherny, V. V. (1998). Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. Journal of General Physiology, 112(4), 503–522.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, S. C., & Deutsch, C. (1990). Temperature dependence of K(+)-channel properties in human T lymphocytes. Biophysical Journal, 57(1), 49–62.

    PubMed  CAS  Google Scholar 

  29. Pusch, M., Ludewig, U., & Jentsch, T. J. (1997). Temperature dependence of fast and slow gating relaxations of ClC-0 chloride channels. Journal of General Physiology, 109(1), 105–116.

    Article  PubMed  CAS  Google Scholar 

  30. Schauf, C. L., & Bullock, J. O. (1982). Solvent substitution as a probe of channel gating in Myxicola. Effects of D2O on kinetic properties of drugs that occlude channels. Biophysical Journal, 37(2), 441–452.

    Article  PubMed  CAS  Google Scholar 

  31. Moran, M. M., Xu, H., & Clapham, D. E. (2004). TRP ion channels in the nervous system. Current Opinion in Neurobiology, 14(3), 362–369.

    Article  PubMed  CAS  Google Scholar 

  32. Bandell, M., Macpherson, L. J., & Patapoutian, A. (2007). From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Current Opinion in Neurobiology, 17(4), 490–497.

    Article  PubMed  CAS  Google Scholar 

  33. Jordt, S. E., McKemy, D. D., & Julius, D. (2003). Lessons from peppers and peppermint: the molecular logic of thermosensation. Current Opinion in Neurobiology, 13(4), 487–492.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funding from the Chinese National Science Foundations (No. 30470416; No. 30870582) and the National “985” Project to C. Sun and from the U.S. NIH (REY016754A) and the American Heart Association (0665201Y) to J. Zheng. Part of the work was conducted in a UC Davis facility constructed with support from Research Facilities Improvement Program Grant C06-RR-12088-01 from the National Center for Research Resources.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changsen Sun or Jie Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, S., Yang, F., Zhou, C. et al. Temperature-dependent Activation of Neurons by Continuous Near-infrared Laser. Cell Biochem Biophys 53, 33–42 (2009). https://doi.org/10.1007/s12013-008-9035-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9035-2

Keywords

Navigation