Skip to main content
Log in

Mechanosensitive Channels: Insights from Continuum-Based Simulations

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Mechanotransduction plays an important role in regulating cell functions and it is an active topic of research in biophysics. Despite recent advances in experimental and numerical techniques, the intrinsic multiscale nature imposes tremendous challenges for revealing the working mechanisms of mechanosensitive channels. Recently, a continuum-mechanics-based hierarchical modeling and simulation framework has been established and applied to study the mechanical responses and gating behaviors of a prototypical mechanosensitive channel, the mechanosensitive channel of large conductance (MscL) in bacteria Escherichia coli (E. coli), from which several putative gating mechanisms have been tested and new insights are deduced. This article reviews these latest findings using the continuum mechanics framework and suggests possible improvements for future simulation studies. This computationally efficient and versatile continuum-mechanics-based protocol is poised to make contributions to the study of a variety of mechanobiology problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hamill, O. P., & Martinac, B. (2001). Molecular basis of mechanotransduction in living cells. Physiological Reviews, 81, 685–740.

    PubMed  CAS  Google Scholar 

  2. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20, 811–827.

    Article  PubMed  CAS  Google Scholar 

  3. Kamm, R. D., & Kaazempur-Mofrad, M. R. (2004). On the molecular basis for mechanotransduction. Mechanics & Chemistry of Biosystems, 1, 201–209.

    Google Scholar 

  4. Martinac, B. (2004). Mechanosensitive ion channels: Molecules of mechanotransduction. Journal of Cell Science, 117, 2449–2460.

    Article  PubMed  CAS  Google Scholar 

  5. Bounoutas, A., & Chalfie, M. (2007). Touch sensitivity in Caenorhabditis elegans. Pflugers Archiv: European Journal of Physiology, 454, 691–702.

    Article  PubMed  CAS  Google Scholar 

  6. Tang, Y., Cao, G., Chen, X., Yoo, J., Yethiraj, A., & Cui, Q. (2006). A finite element framework for studying the mechanical response of macromolecules: Application to the gating of the mechanosensitive channel MscL. Biophysical Journal, 91, 1248–1263.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, X., Cui, Q., Yoo, J., Tang, Y., & Yethiraj, A. (2008). Gating mechanisms of the mechanosensitive channels of large conductance, Part I: Theoretical and numerical framework. Biophysical Journal, 95, 563–580.

    Article  PubMed  CAS  Google Scholar 

  8. Tang, Y., Yoo, J., Yethiraj, A., Cui, Q., & Chen, X. (2008). Gating mechanisms of mechanosensitive channels of large conductance part II: Systematic study of conformational transitions. Biophysical Journal, 95, 581–596.

    Article  PubMed  CAS  Google Scholar 

  9. Gustin, M. C., Zhou, X. L., Martinac, B., & Kung, C. (1988). A mechanosensitive ion channel in the yeast plasma-membrane. Science, 242, 762–765.

    Article  PubMed  CAS  Google Scholar 

  10. Kernan, M. J. (2007). Mechanotransduction and auditory transduction in Drosophila. Pflugers Archiv: European Journal of Physiology, 454, 703–720.

    Article  PubMed  CAS  Google Scholar 

  11. Makino, A., Prossnitz, E. R., Bunemann, M., Wang, J. M., Yao, W. J., & Schmid-Schoenbein, G. W. (2006). G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. American Journal of Physiology-Cell Physiology, 290, C1633–C1639.

    Article  PubMed  CAS  Google Scholar 

  12. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., & Rees, D. C. (1998). Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science, 282, 2220–2226.

    Article  PubMed  CAS  Google Scholar 

  13. Sukharev, S., Betanzos, M., Chiang, C. S., & Guy, H. R. (2001). The gating mechanism of the large mechanosensitive channel MscL. Nature, 409, 720–724.

    Article  PubMed  CAS  Google Scholar 

  14. Sukharev, S., & Anishkin, A. (2004). Mechanosensitive channels: What can we learn from ‘simple’ model systems? Trends in Neurosciences, 27, 345–351.

    Article  PubMed  CAS  Google Scholar 

  15. Sukharev, S., Durell, S. R., & Guy, H. R. (2001). Structural models of the MscL gating mechanism. Biophysical Journal, 81, 917–936.

    PubMed  CAS  Google Scholar 

  16. Sukharev, S. I., Sigurdson, W. J., Kung, C., & Sachs, F. (1999). Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. Journal of General Physiology, 113, 525–539.

    Article  PubMed  CAS  Google Scholar 

  17. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R., & Kung, C. (1994). A large-conductance mechanosensitive channel in E. coli encoded by Mscl alone. Nature, 368, 265–268.

    Article  PubMed  CAS  Google Scholar 

  18. Wiggins, P., & Philips, R. (2004). Analytical models for mechanotransduction: Gating a mechanosensitive channel. Proceedings of the National Academy of Sciences of the United States of America, 101, 4071–4076.

    Article  PubMed  CAS  Google Scholar 

  19. Kloda, A., & Martinac, B. (2001). Mechanosensitive channel of Thermoplasma, the cell wall-less Archaea—cloning and molecular characterization. Cell Biochemistry and Biophysics, 34, 321–347.

    Article  PubMed  CAS  Google Scholar 

  20. Perozo, E., Kloda, A., Cortes, D. M., & Martinac, B. (2002). Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Structural Biology, 9, 696–703.

    Article  PubMed  CAS  Google Scholar 

  21. Moe, P., & Blount, P. (2005). Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension and lipid headgroups. Biochemistry, 44, 12239–12244.

    Article  PubMed  CAS  Google Scholar 

  22. Gullingsrud, J., & Schulten, K. (2004). Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophysical Journal, 86, 3496–3509.

    Article  PubMed  CAS  Google Scholar 

  23. Elmore, D. E., & Dougherty, D. A. (2003). Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophysical Journal, 85, 1512–1524.

    PubMed  CAS  Google Scholar 

  24. Nagle, J. F., & Tristram-Nagle, S. (2000). Structure of lipid bilayers. Biochimica Et Biophysica Acta-Reviews on Biomembranes, 1469, 159–195.

    Article  CAS  Google Scholar 

  25. Evans, E., & Hochmuth, R. (1978). Mechanical properties of membranes. Topics in membrane and transport, 10, 1–64.

    Article  CAS  Google Scholar 

  26. Turner, M. S., & Sens, P. (2004). Gating-by-tilt of mechanically sensitive membrane channels. Physical Review Letters, 93, 118103.

    Article  PubMed  CAS  Google Scholar 

  27. Lindahl, E., & Edholm, O. (2000). Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. Journal of Chemical Physics, 113, 3882–3893.

    Article  CAS  Google Scholar 

  28. Perozo, E. (2006). Gating prokaryotic mechanosensitive channels. Nature Reviews Molecular Cell Biology, 7, 109–119.

    Article  PubMed  CAS  Google Scholar 

  29. Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436, 647–654.

    Article  PubMed  CAS  Google Scholar 

  30. Markin, V. S., & Sachs, F. (2004). Thermodynamics of mechanosensitivity: Lipid shape, membrane deformation and anesthesia. Biophysical Journal, 86, 370A–370A.

    Google Scholar 

  31. Wiggins, P., & Philips, R. (2005). Membrane-protein interactions in mechanosensitive channels. Biophysical Journal, 88, 880–902.

    Article  PubMed  CAS  Google Scholar 

  32. Martinac, B., Buechner, M., Delcour, A. H., Adler, J., & Kung, C. (1987). Pressure-sensitive ion channel in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 84, 2297–2301.

    Article  PubMed  CAS  Google Scholar 

  33. Sukharev, S. I., Blount, P., Martinac, B., & Kung, C. (1997). Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Annual Review of Physiology, 59, 633–657.

    Article  PubMed  CAS  Google Scholar 

  34. Anishkin, A., Gendel, V., Sharifi, N. A., Chiang, C.-S., Shirinian, L., Guy, H. R., et al. (2003). On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. Journal of General Physiology, 121, 227–244.

    Article  PubMed  CAS  Google Scholar 

  35. Perozo, E., & Rees, D. (2003). Structure and mechanism in prokaryotic mechanosensitive channels. Current Opinion in Structural Biology, 13, 432–442.

    Article  PubMed  CAS  Google Scholar 

  36. Steinbacher, S. R. B., Strop, P., & Rees, D. C. (2007). Structures of the prokaryotic mechanosensitive channels MscL and MscS. Current Topics in Membranes, 58, 1–24.

    Article  CAS  Google Scholar 

  37. Maurer, J. A., Elmore, D. E., Clayton, D., Xiong, L., Lester, H. A., & Dougherty, D. A. (2008). Confirming the revised C-terminal domain of the MscL crystal structure. Biophysical Journal, 94, 4662–4667.

    Article  PubMed  CAS  Google Scholar 

  38. Kloda, A., Ghazi, A., & Martinac, B. (2006). C-Terminal charged cluster of MscL, RKKEE, functions as a pH sensor. Biophysical Journal, 90, 1992–1998.

    Article  PubMed  CAS  Google Scholar 

  39. Blount, P., Sukharev, S. I., Moe, P. C., Nagle, S. K., & Kung, C. (1996). Towards an understanding of the structural and functional properties of MscL, a mechanosensitive channel in bacteria. Biology of the Cell, 87, 1–8.

    Article  PubMed  CAS  Google Scholar 

  40. Gu, L. Q., Liu, W. H., & Martinac, B. (1998). Electromechanical coupling model of gating the large mechanosensitive ion channel (MscL) of Escherichia coli by mechanical force. Biophysical Journal, 74, 2889–2902.

    PubMed  CAS  Google Scholar 

  41. Yoshimura, K., Batiza, A., Schroeder, M., Blount, P., & Kung, C. (1999). Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophysical Journal, 77, 1960–1972.

    Article  PubMed  CAS  Google Scholar 

  42. Yoshimura, K., Nomura, T., & Sokabe, M. (2004). Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophysical Journal, 86, 2113–2120.

    PubMed  CAS  Google Scholar 

  43. Anishkin, A., Chiang, C. S., & Sukharev, S. (2005). Gain of function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. The Journal of General Physiology, 125, 155–170.

    Article  PubMed  CAS  Google Scholar 

  44. Ajouz, B., Berrier, C., Besnard, M., Martinac, B., & Ghazi, A. (2000). Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. The Journal of Biological Chemistry, 275, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  45. Park, K. H., Berrier, C., Martinac, B., & Ghazi, A. (2004). Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophysical Journal, 86, 2129–2136.

    PubMed  CAS  Google Scholar 

  46. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., & Martinac, B. (2002). Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 418, 942–948.

    Article  PubMed  CAS  Google Scholar 

  47. Corry, B., Rigby, P., Liu, Z. W., & Martinac, B. (2005). Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophysical Journal, 89, L49–L51.

    Article  PubMed  CAS  Google Scholar 

  48. Blount, P., Schroeder, M. J., & Kung, C. (1997). Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. The Journal of Biological Chemistry, 272, 32150–32157.

    Article  PubMed  CAS  Google Scholar 

  49. Ursell, T., Huang, K. C., Peterson, E., & Phillips, R. (2007). Cooperative gating and spatial organization of membrane proteins through elastic interactions. Plos Computational Biology, 3, 803–812.

    Article  CAS  Google Scholar 

  50. Tirion, M. M. (1996). Low amplitude motions in proteins from a single-parameter atomic analysis. Physical Review Letters, 77, 1905–1908.

    Article  PubMed  CAS  Google Scholar 

  51. Valadie, H., Lacapcre, J. J., Sanejouand, Y. H., & Etchebest, C. (2003). Dynamical properties of the MscL of Escherichia coli: A normal mode analysis. Journal of Molecular Biology, 332, 657–674.

    Article  PubMed  CAS  Google Scholar 

  52. Ikeguchi, M., Ueno, J., Sato, M., & Kidera, A. (2005). Protein structural change upon ligand binding: Linear response theory. Physical Review Letters, 94, 078102.

    Article  PubMed  CAS  Google Scholar 

  53. Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules (vol 9, pg 646, 2002). Nature Structural Biology, 9, 788–788.

    Article  CAS  Google Scholar 

  54. Gullingsrud, J., & Schulten, K. (2003). Gating of MscL studied by steered molecular dynamics. Biophysical Journal, 85, 2087–2099.

    PubMed  CAS  Google Scholar 

  55. Gullingsrud, J., Kosztin, D., & Schulten, K. (2001). Structural determinants of MscL gating studied by molecular dynamics simulations. Biophysical Journal, 80, 2074–2081.

    PubMed  CAS  Google Scholar 

  56. Jeon, J., & Voth, G. A. (2008). Gating of the mechanosensitive channel protein MscL: The interplay of membrane and protein. Biophysical Journal, 94, 3497–3511.

    Article  PubMed  CAS  Google Scholar 

  57. Schlitter, J., Engels, M., Kruger, P., Jacoby, E., & Wollmer, A. (1993). Targeted molecular-dynamics simulation of conformational change—application to the T$R transition insulin. Molecular Simulation, 10, 291–308.

    Article  CAS  Google Scholar 

  58. Kong, Y. F., Shen, Y. F., Warth, T. E., & Ma, J. P. (2002). Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proceedings of the National Academy of Sciences of the United States of America, 99, 5999–6004.

    Article  PubMed  CAS  Google Scholar 

  59. Bilston, L. E., & Mylvaganam, K. (2002). Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Letters, 512, 185–190.

    Article  PubMed  CAS  Google Scholar 

  60. Meyer, G. R., Gullingsrud, J., Schulten, K., & Martinac, B. (2006). Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophysical Journal, 91, 1630–1637.

    Article  PubMed  CAS  Google Scholar 

  61. Debret, G., Valadié, H., Stadler, A. M., & Etchebest, C. (2008). New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins, 71, 1183–1196.

    Article  PubMed  CAS  Google Scholar 

  62. Yefimov, S., van der Giessen, E., Onck, P. R., & Marrink, S. J. (2008). Mechanosensitive membrane channels in action. Biophysical Journal, 94, 2994–3002.

    Article  PubMed  CAS  Google Scholar 

  63. Shi, Q., Izvekov, S., & Voth, G. A. (2006). Mixed atomistic and coarse-grained molecular dynamics: Simulation of a membrane-bound ion channel. The Journal of Physical Chemistry B, 110, 15045–15048.

    Article  PubMed  CAS  Google Scholar 

  64. Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & de Vries, A. H. (2007). The MARTINI forcefield: Coarse-grained model for biomolecular simulations. The Journal of Physical Chemistry B, 111, 7812–7824.

    Article  PubMed  CAS  Google Scholar 

  65. Lopez, C. F., Nielsen, S. O., Moore, P. B., & Klein, M. L. (2004). Understanding nature’s design for a nanosyringe. Proceedings of the National Academy of Sciences of the United States of America, 101, 4431–4434.

    Article  PubMed  CAS  Google Scholar 

  66. Izvekov, S., & Voth, G. A. (2005). Multiscale coarse graining of liquid-state systems. Journal of Chemical Physics, 123, 134105.

    Article  PubMed  CAS  Google Scholar 

  67. ABAQUS (2004) Abaqus 6.4 user’s manual 2004. Providence, Rhode Island: ABAQUS Inc.

  68. Anishkin, A., & Kung, C. (2005). Microbial mechanosensation. Current Opinion in Neurobiology, 15, 397–405.

    Article  PubMed  CAS  Google Scholar 

  69. Ling, C. B. (1948). On the stresses in a plate containing 2 circular holes. Journal of Applied Physics, 19, 77–81.

    Article  Google Scholar 

  70. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., & Sigworth, F. J. (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv European Journal of Physiology, 391, 85–100.

    Article  PubMed  CAS  Google Scholar 

  71. Sachs, F., & Morris, C. E. (1998). Mechanosensitive ion channels in nonspecialized cells. Reviews of Physiology, Biochemistry and Pharmacology, 132, 1–77.

    Article  PubMed  CAS  Google Scholar 

  72. Hartmann, C., & Delgado, A. (2004). Stress and strain in a yeast cell under high hydrostatic pressure. PAMM, 4, 316–317.

    Article  Google Scholar 

  73. Gordon, V. D., Chen, X., Hutchinson, J. W., Bausch, A. R., Marquez, M., & Weitz, D. A. (2004). Self-assembled polymer membrane capsules inflated by osmotic pressure. Journal of the American Chemical Society, 126, 14117–14122.

    Article  PubMed  CAS  Google Scholar 

  74. Sanner, M. (2008). http://Www.Scripps.Edu/~Sanner/Html/Msms_Home.Html.

  75. Bathe, M. (2008). A finite element framework for computation of protein normal modes and mechanical response. Proteins-Structure Function and Bioinformatics, 70, 1595–1609.

    Article  CAS  Google Scholar 

  76. Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041.

    Article  PubMed  CAS  Google Scholar 

  77. Feig, M., & Brooks, C. L. (2004). Recent advances in the development and application of implicit solvent models in biomolecule simulations. Current Opinion in Structural Biology, 14, 217–224.

    Article  PubMed  CAS  Google Scholar 

  78. Zhou, Y. C., Holst, M., & McCammon, J. A. (2008). A nonlinear elasticity model of macromolecular conformational change induced by electrostatic forces. Journal of Mathematical Analysis and Applications, 340, 135–164.

    Article  PubMed  Google Scholar 

  79. Akitake, B., Anishkin, A., Liu, N., & Sukharev, S. (2007). Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nature Structural & Molecular Biology, 14, 1141–1149.

    Article  CAS  Google Scholar 

  80. Miyashita, O., Onichic, J. N., & Wolynes, P. G. (2003). Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proceedings of the National Academy of Sciences of the United States of America, 100, 12570–12575.

    Article  PubMed  CAS  Google Scholar 

  81. Zwanzig, R. (2001). Non-equilibrium statistical mechanics. 2001. New York: Oxford University Press.

    Google Scholar 

  82. Iscla, I. G. L. , Wray, R., & Blount, P. (2007). Disulfide trapping the mechanosensitive channel MscL into a gating-transition state. Biophysical Journal, 92, 1224–1232.

    Article  PubMed  CAS  Google Scholar 

  83. Liu, L., Qiao, Y., & Chen, X. (2008). Pressure-driven water infiltration into carbon nanotube: The effect of applied charges. Applied Physics Letters, 92, 101927.

    Article  CAS  Google Scholar 

  84. Han, A., Chen, X., & Qiao, Y. (2008). Effects of addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel. Langmuir, 24, 7044–7047.

    Article  PubMed  CAS  Google Scholar 

  85. Ramsey, I. S., Delling, M., & Clapham, D. E. (2006). An introduction to TRP channels. Annual Review of Physiology, 68, 619–647.

    Article  PubMed  CAS  Google Scholar 

  86. Dhaka, A., Viswanath, V., & Patapoutian, A. (2006). TRP ion channels and temperature sensation. Annual Review of Neuroscience, 29, 135–161.

    Article  PubMed  CAS  Google Scholar 

  87. Zhou, X., Batiza, A. F., Loukin, S. H., Palmer, C. P., Kung, C., & Saimi, Y. (2003). The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proceedings of the National Academy of Sciences of the United States of America, 100, 7105–7110.

    Article  PubMed  CAS  Google Scholar 

  88. Saimi, Y., Zhou, X. L., Loukin, S. H., Haynes, W. J., and Kung, C. (2007). Microbial TRP channels and their mechanosensitivity, In: O. P. Hamill (Ed.), Mechanosensitive Ion Channels, Part A (pp. 311–327). Boston: Academic Press.

  89. Tombola, F., Pathak, M. M., & Isacoff, E. Y. (2006). How does voltage open an ion channel. Annual Review of Cell and Developmental Biology, 22, 23–52.

    Article  PubMed  CAS  Google Scholar 

  90. Long, S. B., Campbell, E. B., & MacKinnon, R. (2005). Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science, 309, 897–903.

    Article  PubMed  CAS  Google Scholar 

  91. Long, S. B., Campbell, E. B., & MacKinnon, R. (2005). Voltage sensor of kv1.2: Structural basis of electromechanical coupling. Science, 309, 903–908.

    Article  PubMed  CAS  Google Scholar 

  92. Bass, R. B., Strop, P., Barclay, M. T., & Rees, D. C. (2002). Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 298, 1582–1587.

    Article  PubMed  CAS  Google Scholar 

  93. Anishkin, A., & Sukharev, S. (2004). Water dynamics and dewetting transition in the small mechanosensitive channel MscS. Biophysical Journal, 86, 2883–2895.

    Article  PubMed  CAS  Google Scholar 

  94. Spronk, S. A., Elmore, D. E., & Dougherty, D. A. (2006). Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophysical Journal, 90, 3555–3569.

    Article  PubMed  CAS  Google Scholar 

  95. Sotomayor, M., Vasquez, V., Perozo, E., & Schulten, K. (2007). Ion conduction through MscS as determined by electrophysiology and simulation. Biophysical Journal, 92, 886–902.

    Article  PubMed  CAS  Google Scholar 

  96. Edwards, M. D., Booth, I. R., & Miller, S. (2004). Gating the bacterial mechanosensitive channels: MscS a new paradigm? Current Opinions in Microbiology, 7, 163–167.

    Article  CAS  Google Scholar 

  97. Edwards, M. D., Li, Y., Kim, S., Miller, S., Bartlett, W., Black, S., et al. (2005). Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nature Structural & Molecular Biology, 12, 113–119.

    Article  CAS  Google Scholar 

  98. Akitake, B., Anishkin, A., & Sukharev, S. (2005). The “dashpot” mechanism of stretch-dependent gating in MscS. The Journal of General Physiology, 125, 143–154.

    Article  PubMed  CAS  Google Scholar 

  99. Perozo, E. (2006). Gating prokaryotic mechanosensitive channels. Nature Reviews Molecular Cell Biology, 7, 109–119.

    Article  PubMed  CAS  Google Scholar 

  100. Martinac, B., Adler, J., & Kung, C. (1990). Mechanosensitive ion channels of E. coli activated by amphipaths. Nature, 348, 261–263.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of YT and XC are supported by NSF CMS-0407743 and CMMI-0643726. The work of JY and QC are supported by the National Institutes of Health (R01-GM071428). QC also acknowledges a Research Fellowship from the Alfred P. Sloan Foundation. Computational resources from the National Center for Supercomputing Applications at the University of Illinois are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Cui or Xi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Yoo, J., Yethiraj, A. et al. Mechanosensitive Channels: Insights from Continuum-Based Simulations. Cell Biochem Biophys 52, 1–18 (2008). https://doi.org/10.1007/s12013-008-9024-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9024-5

Keywords

Navigation