Skip to main content
Log in

Extremely High Frequency Electromagnetic Radiation Enforces Bacterial Effects of Inhibitors and Antibiotics

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The coherent electromagnetic radiation (EMR) of the frequency of 51.8 and 53 GHz with low intensity (the power flux density of 0.06 mW/cm2) affected the growth of Escherichia coli K12(λ) under fermentation conditions: the lowering of the growth specific rate was considerably (~2-fold) increased with exposure duration of 30–60 min; a significant decrease in the number of viable cells was also shown. Moreover, the enforced effects of the N,N′-dicyclohexylcarbodiimide (DCCD), inhibitor of H+-transporting F0F1-ATPase, on energy-dependent H+ efflux by whole cells and of antibiotics like tetracycline and chloramphenicol on the following bacterial growth and survival were also determined after radiation. In addition, the lowering in DCCD-inhibited ATPase activity of membrane vesicles from exposed cells was defined. The results confirmed the input of membranous changes in bacterial action of low intensity extremely high frequency EMR, when the F0F1-ATPase is probably playing a key role. The radiation of bacteria might lead to changed metabolic pathways and to antibiotic resistance. It may also give bacteria with a specific role in biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Betskii, O. V., Devyatkov, N. D., & Kislov, V. V. (2000). Low intensity millimeter waves in medicine and biology. Critical Reviews in Biomedical Engineering, 28, 247–268.

    PubMed  CAS  Google Scholar 

  2. Pakhomov, A. G., & Murphy, M. B. (2000). Comprehensive review of the research on biological effects of pulsed radiofrequency radiation in Russia and the former Soviet Union. In J. C. Lin (Ed.), Advances in electromagnetic fields in living system (Vol. 3, pp. 265–290). New York: Kluwer Acad. Plenum Publ.

  3. Trushin, M. V. (2003). The possible role of electromagnetic fields in bacterial communication. Journal of Microbiology Immunology and Infection, 36, 153–160.

    Google Scholar 

  4. Matsuhashi, M., Pankrushina, A. N., Takeuchi, S., Ohshima, H., Miyoi, H., Endoh, K., et al. (1998). Production of sound waves by bacterial cells and the response of bacterial cells to sound. Journal of General and Applied Microbiology, 44, 49–55.

    Article  PubMed  CAS  Google Scholar 

  5. Alipov, E. D., Scheglov, V. S., Sarimov, R. M., & Belyaev, I. Ya. (2003). Cell-density dependent effects of low-dose ionizing radiation on E. coli cells. Radiation Biology and Radioecology, 43, 167–171.

    CAS  Google Scholar 

  6. Belyaev, I. Y., Scheglov, V. S., Alipov, Y. D., & Radko, S. P. (1993). Regularities of separate and combined effects of circularly polarized millimeter waves on E coli cells at different phases of culture growth. Bioelectrochemistry and Bioenergetics, 31, 49–63.

    Article  CAS  Google Scholar 

  7. Gub, N. M., Luneva, I. O., Denisova, S. N., & Ostrovsky, N. V. (1995). In Millimeter waves in medicine and biology. 10th Russian Symp. with intern. participation. Moscow, p. 96 (in Russian).

  8. Bulgakova, V. G., Grushina, V. A., Orlova, T. I., Petrykina, Z. M., Polin, A. N., Noks, P. P., et al. (1996). The effect of millimeter-band radiation of non-thermal intensity on sensitivity of Staphylococcus to various antibiotics. Biophysics, 41, 1289–1293.

    CAS  Google Scholar 

  9. Belyaev, I. Y., Scheglov, V. S., Alipov, Y. D., & Listsov, V. N. (1996). Resonance effect of millimeter waves in the power range from 10–19 to 3 × 10−3 W/cm2 on Escherichia coli cells at different concentrations. Bioelectromagnetics, 17, 312–321.

    Article  PubMed  CAS  Google Scholar 

  10. Trchounian, A., Ogandzhanyan, E., Sarkisyan, E., Gonyan, S., Oganesyan, A., & Oganesyan, S. (2001). Membranotropic effects of electromagnetic radiation of extremely high frequency in Escherichia coli. Biophysics, 46, 69–76.

    Google Scholar 

  11. Scheglov, V. S., Alipov, E. D., & Belyaev, I. Ya. (2002). Cell-to-cell communication in response of E coli cells at different phases pf growth to low-intensity microwaves. Biochimica et Biophysica Acta, 1572, 101–106.

    Google Scholar 

  12. Isakhanyan, V., & Trchounian, A. (2005). Indirect and repeated electromagnetic irradiation with extremely high frequency of bacteria Escherichia coli. Biophysics, 50, 604–606.

    Google Scholar 

  13. Novoselova, E. G., Glushkova, O. V., Sinotova, O. A., & Fesenko, E. E. (2005). Stress response of the cell to exposure to ultra-weak electromagnetic radiation. Dokladi of Russian Academy of Sciences, 401, 117–119. (in Russian).

    Google Scholar 

  14. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2006). Direct and mediated effects of the extremely high frequency coherent electromagnetic radiation (millimeter waves) with low intensity on bacteria. In Biological effects of electromagnetic fields. Proc. 4 th Intern. Workshop, Crete (Greece), pp. 1307–1314.

  15. Tadevosyan, H., Kalantaryan, V., & Trchounian, A. (2007). The effects of electromagnetic radiation of extremely high frequency and low intensity on the growth rate of Escherichia coli and the role of medium pH. Biophysics, 52, 893–898.

    CAS  Google Scholar 

  16. Belyaev, I. (2005). Non-thermal biological effects of microwaves. Microwave Reviews, 11, 13–29.

    Google Scholar 

  17. Fesenko, E. E., Geletyuk, V. I., Kazachenko, V. N., & Chemeris, N. K. (1995). Preliminary microwave irradiation of water solutions changes their channel-modifying activity. FEBS Letters, 366, 49–52.

    Article  PubMed  CAS  Google Scholar 

  18. Belyaev, I. Ya., Alipov, Y. D., Scheglov, V. S., & Lystsov, V. N. (1992). Resonance effect of microwaves on the genome conformational state of E. coli cells. Zeitschrift Fur Naturforschung, 47, 621–627.

    PubMed  CAS  Google Scholar 

  19. Trchounian, A., Ohandjanyan, E., Bagramyan, K., Vardanyan, V., Zakharyan, E., Vassilian, A., et al. (1998). Relationship of the Escherichia coli TrkA system of potassium ion uptake with the F0F1-ATPase under growth conditions without anaerobic or aerobic respiration. Bioscience Reports, 18, 143–154.

    Article  PubMed  CAS  Google Scholar 

  20. Markarian, S. A., Poladyan, A. A., Kirakosyan, G. R., Trchounian, A. A., & Bagramyan, K. A. (2002). Effect of diethylsulphoxide on growth, survival and ion exchange of Escherichia coli. Letters in Applied Microbiology, 34, 417–421.

    Article  PubMed  CAS  Google Scholar 

  21. Konings, W. N., & Kaback, H. R. (1973). Anaerobic transport in Escherichia coli membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America, 70, 3376–3381.

    Article  PubMed  CAS  Google Scholar 

  22. Bagramyan, K., Mnatsakanyan, N., & Trchounian, A. (2003). Formate increases the F0F1-ATPase activity in Escherichia coli membrane vesicles. Biochemical and Biophysical Research Communications, 306, 361–365.

    Article  PubMed  CAS  Google Scholar 

  23. Zakharyan, E., & Trchounian, A. (2001). K+ influx by Kup in Escherichia coli is accompanied by a decrease in H+ efflux. FEMS (Federation of European Microbiological Societies) Microbiology Letters, 204, 61–64.

    Article  CAS  Google Scholar 

  24. Akopyan, K., & Trchounian, A. (2006). Escherichia coli membrane proton conductance and proton efflux depend on growth pH and are sensitive to osmotic stress. Cell Biochemistry and Biophysics, 46, 201–208.

    Article  PubMed  CAS  Google Scholar 

  25. Trchounian, A. A., & Vassilian, A. V. (1994). Relationship between the F0F1 ATPase and the K+ transport system within the membrane of anaerobically grown Escherichia coli. N,N’-dicyclohexylcarbodiimide-sensitive ATPase activity in trk mutants. Journal of Bioenergetics and Biomembranes, 26, 563–571.

    Article  PubMed  CAS  Google Scholar 

  26. Lowry, O. H., Rosenbrough, N. J., Farr, A. C., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  27. Nakamoto, R. K., Ketchum, C. J., Kuo, P. H., Peskova, Y. B., & Al-Shawi, M. K. (2000). Molecular mechanisms of rotational coupling in the F0F1 ATP synthase. Biochimica et Biophysica Acta, 1458, 289–299.

    Article  PubMed  CAS  Google Scholar 

  28. Azzi, A., Casey, R. P., & Nalecz, M. J. (1984). The effect of N,N′-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochimica et Biophysica Acta, 768, 209–226.

    PubMed  CAS  Google Scholar 

  29. Martirosov, S. M., & Trchounian, A. A. (1983). An electrochemical study of energy-dependent potassium accumulation in E. coli. 10. Operation of H+-K+-exchanging mechanisms in unc mutants. Bioelectrochemistry and Bioenergetics, 11, 29–36.

    Article  CAS  Google Scholar 

  30. Trchounian, A., Ohandjanian, E., & Vanian, P. (1994). Osmosensitivity of the 2H+/K+-exchange and the H+-F0F1-ATPase in anaerobically grown Escherichia coli. Current Microbiology, 29, 187–191.

    Article  CAS  Google Scholar 

  31. Trchounian, A. (2004). Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transpopters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochemical and Biophysical Research Communications, 315, 1051–1057.

    Article  PubMed  CAS  Google Scholar 

  32. McMurry, L. M., Hendricks, M., & Levy, S. B. (1986). Effects of toluene permeabilization and cell deenergization on tetracycline resistance in Escherichia coli. Journal of Bacteriology, 29, 681–686.

    CAS  Google Scholar 

  33. Thanassi, D. G., Suh, G. S. B., & Nikaido, H. (1995). Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. Journal of Bacteriology, 177, 998–1007.

    PubMed  CAS  Google Scholar 

  34. Nelson, M. L., & Levy, S. B. (1999). Reversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport protein. Antimicrobial Agents and Chemotherapy, 43, 1719–1724.

    PubMed  CAS  Google Scholar 

  35. Krulwich, T. A., Jin, J., Guffanti, A. A., & Bechhofer, H. (2001). Functions of tetracycline efflux proteins that do not involve tetracycline. Journal of Molecular Microbiology and Biotechnology, 3, 237–246.

    PubMed  CAS  Google Scholar 

  36. Bellaaj, A., Mallea, M., Bollet, C., Belhadj, C., Belhadj, O., & Ben-Mahrez, K. (2002). A multiple-antibiotic resistance-independent active chloramphenicol efflux in an Escherichia coli clinical isolate. Drugs Under Experimental and Clinical Research, 28, 99–104.

    PubMed  CAS  Google Scholar 

  37. Li, R. C., Lee, S. W., & Kong, C. H. (1997). Correlation between bactericidal activity and post-antibiotic effect for five antibiotics with different mechanisms of action. Journal of Antimicrobial Chemotherapy, 40, 39–45.

    Article  PubMed  CAS  Google Scholar 

  38. Kuo, P. H., Ketchum, C. J., & Nakamoto, R. K. (1998). Stability and functionality of cysteine-less F0F1-ATP synthase from Escherichia coli. FEBS Letters, 426, 217–220.

    Article  PubMed  CAS  Google Scholar 

  39. Schemidt, R. A., Qu, J., Williams, J. R., & Brusilow, W. S. (1998). Effects of carbon source on expression of F0 genes and on the stoichiometry of the c subunit in the F1F0 ATPase of Escherichia coli. Journal of Bacteriology, 180, 3205–3208.

    PubMed  CAS  Google Scholar 

  40. Mnatsakanyan, N., Bagramyan, K., Vassilian, A., Nakamoto, R. K., & Trchounian, A. (2002). F0 cysteine, bCys21, in the Escherichia coli ATP synthase is involved in regulation of potassium uptake and molecular hydrogen production in anaerobic conditions. Bioscience Reports, 22, 421–430.

    Article  PubMed  CAS  Google Scholar 

  41. Xu, C., Lin, X., Ren, H., Zhang, Y., Wang, S., & Peng, X. (2006). Analysis of outer membrane roteome of Escherichia coli related to resistance to ampicillin and tetracycline. Proteomics, 6, 462–473.

    Article  PubMed  CAS  Google Scholar 

  42. Cambau, E., & Gutmann, L. (1993) Mechanisms of resistance to quinolones. Drugs, 45(Suppl. 3), 15–23.

    Google Scholar 

Download references

Acknowledgements

This study was done within the framework supported by Ministry of Education and Science of the Republic of Armenia (Grants # 0167-2005 and # 1012-2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Trchounian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tadevosyan, H., Kalantaryan, V. & Trchounian, A. Extremely High Frequency Electromagnetic Radiation Enforces Bacterial Effects of Inhibitors and Antibiotics. Cell Biochem Biophys 51, 97–103 (2008). https://doi.org/10.1007/s12013-008-9020-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-008-9020-9

Keywords

Navigation