Skip to main content

Advertisement

Log in

Polarized membrane distribution of potassium-dependent ion pumps in epithelial cells: Different roles of the N-glycans of their β subunits

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The Na,K-ATPases and the H,K-ATPases are two potassium-dependent homologous heterodimeric P2-type pumps that catalyze active transport of Na+ in exchange for K+ (Na,K-ATPase) or H+ in exchange for K+ (H,K-ATPase). The ubiquitous Na,K-ATPase maintains intracellular ion balance and membrane potential. The gastric H,K-ATPase is responsible for acid secretion by the parietal cell of the stomach. Both pumps consist of a catalytic α-subunit and a glycosylated β-subunit that is obligatory for normal pump maturation and trafficking. Individual N-glycans linked to the β-subunits of the Na,K-ATPase and H,K-ATPase are important for stable membrane integration of their respective α subunits, folding, stability, subunit assembly, and enzymatic activity of the pumps. They are also essential for the quality control of unassembled β-subunits that results in either the exit of the subunits from the ER or their ER retention and subsequent degradation. Overall, the importance of N-glycans for the␣maturation and quality control of the H,K-ATPase is greater than that of the Na,K-ATPase. The roles of individual N-glycans of the β-subunits in the post-ER trafficking, membrane targeting and plasma membrane retention of the Na,K-ATPase and H,K-ATPase are different. The Na,K-ATPase β 1-subunit is the major β-subunit isoform in cells with lateral location of the pump. All three N-glycans of the Na,K-ATPase β 1-subunit are important for the lateral membrane retention of the pump due to glycan-mediated interaction between the β 1-subunits of the two neighboring cells in the cell monolayer and cytosolic linkage of the α-subunit to the cytoskeleton. This intercellular β 1β 1 interaction is also important for formation of cell–cell contacts. In contrast, the N-glycans unique to the Na,K-ATPase β 2-subunit,which has up to eight N-glycosylation sites, contain apical sorting information. This is consistent with the apical location of the Na,K-ATPase in normal and malignant epithelial cells with high abundance of the β 2-subunit. Similarly, all seven N-glycans of the gastric H,K-ATPase β-subunit determine apical sorting of this subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanco, G., & Mercer, R. W. (1998). Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. The American Journal of Physiology, 275, F633–F650.

    PubMed  CAS  Google Scholar 

  2. Crambert, G., Hasler, U., Beggah, A. T., Yu, C., Modyanov, N. N., Horisberger, J. D., Lelievre, L., & Geering, K. (2000). Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. The Journal of Biological Chemistry, 275, 1976–1986.

    PubMed  CAS  Google Scholar 

  3. Sweadner, K. J., & Rael, E. (2000). The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics, 68, 41–56.

    PubMed  CAS  Google Scholar 

  4. Geering, K. (2006). FXYD proteins: New regulators of Na-K-ATPase. American Journal of Physiology. Renal Physiology, 290, F241–250.

    PubMed  CAS  Google Scholar 

  5. Reuben, M. A., Lasater, L. S., & Sachs, G. (1990). Characterization of a beta subunit of the gastric H+/K(+)-transporting ATPase. Proceedings of National Academic Science of the United States of America, 87, 6767–6771.

    CAS  Google Scholar 

  6. Shull, G. E. (1990). cDNA cloning of the beta-subunit of the rat gastric H,K-ATPase. The Journal of Biological Chemistry, 265, 12123–12126.

    PubMed  CAS  Google Scholar 

  7. Bamberg, K., Mercier, F., Reuben, M. A., Kobayashi, Y., Munson, K. B., & Sachs, G. (1992). cDNA cloning and membrane topology of the rabbit gastric H+/K(+)-ATPase alpha-subunit. Biochimica Biophys Acta, 1131, 69–77.

    CAS  Google Scholar 

  8. Crowson, M. S., & Shull, G. E. (1992). Isolation and characterization of a cDNA encoding the putative distal colon H+,K(+)-ATPase Similarity of deduced amino acid sequence to gastric H+,K(+)-ATPase and Na+,K(+)-ATPase and mRNA expression in distal colon, kidney, and uterus. The Journal of Biological Chemistry, 267, 13740–13748.

    PubMed  CAS  Google Scholar 

  9. Grishin, A. V., Sverdlov, V. E., Kostina, M. B., & Modyanov, N. N. (1994). Cloning and characterization of the entire cDNA encoded by ATP1AL1–a member of the human Na,K/H,K-ATPase gene family. FEBS Letters, 349, 144–150.

    PubMed  CAS  Google Scholar 

  10. Pestov, N. B., Romanova, L. G., Korneenko, T. V., Egorov, M. V., Kostina, M. B., Sverdlov, V. E., Askari, A., Shakhparonov, M. I., & Modyanov, N. N. (1998). Ouabain-sensitive H,K-ATPase: tissue-specific expression of the mammalian genes encoding the catalytic alpha subunit. FEBS Letters, 440, 320–324.

    PubMed  CAS  Google Scholar 

  11. Pestov, N. B., Korneenko, T. V., Radkov, R., Zhao, H., Shakhparonov, M. I., & Modyanov, N. N. (2004). Identification of the beta-subunit for nongastric H-K-ATPase in rat anterior prostate. American Journal of Physiology Cell Physiology, 286, C1229–C1237.

    PubMed  CAS  Google Scholar 

  12. Caplan, M. J. (1997). Ion pumps in epithelial cells: Sorting, stabilization, and polarity. The American Journal of Physiology, 272, G1304–G1313.

    PubMed  CAS  Google Scholar 

  13. Wilson, P. D. (2004). Polycystic Kidney Disease. The New England Journal of Medicine, 350, 151–164.

    PubMed  CAS  Google Scholar 

  14. Wilson, P. D., Devuyst, O., Li, X., Gatti, L., Falkenstein, D., Robinson, S., Fambrough, D., & Burrow, C. R. (2000). Apical plasma membrane mispolarization of NaK-ATPase in polycystic kidney disease epithelia is associated with aberrant expression of the {beta}2 isoform. The American Journal of Pathology, 156, 253–268.

    PubMed  CAS  Google Scholar 

  15. Mobasheri, A., Oukrif, D., Dawodu, S. P., Sinha, M., Greenwell, P., Stewart, D., Djamgoz, M. B., Foster, C. S., Martin-Vasallo, P., & Mobasheri, R. (2001). Isoforms of Na+, K+-ATPase in human prostate; specificity of expression and apical membrane polarization. Histology and Histopathology, 16, 141–154.

    PubMed  CAS  Google Scholar 

  16. Ruiz, A., Bhat, S. P., & Bok, D. (1996). Expression and synthesis of the Na,K-ATPase beta 2 subunit in human retinal pigment epithelium. Gene, 176, 237–242.

    PubMed  CAS  Google Scholar 

  17. Smolka, A., Helander, H. F., & Sachs, G. (1983). Monoclonal antibodies against gastric H+ + K+ ATPase. The American Journal of Physiology, 245, G589–596.

    PubMed  CAS  Google Scholar 

  18. Fejes-Toth, G., & Naray-Fejes-Toth, A. (2001). Immunohistochemical localization of colonic H,K-ATPase to the apical membrane of connecting tubule cells. American Journal Physiology. Renal Physiology, 281, F318–325.

    CAS  Google Scholar 

  19. Kraut, J. A., Helander, K. G., Helander, H. F., Iroezi, N. D., Marcus, E. A., & Sachs, G. (2001). Detection and localization of H+,K+-ATPase isoforms in human kidney. American Journal Physiology. Renal Physiology, 281, F763–768.

    CAS  Google Scholar 

  20. Rajendran, V. M., Singh, S. K., Geibel, J., & Binder, H. J. (1998). Differential localization of colonic H(+)-K(+)-ATPase isoforms in surface and crypt cells. The American Journal of Physiology, 274, G424–G429.

    PubMed  CAS  Google Scholar 

  21. Pestov, N. B., Korneenko, T. V., Adams, G., Tillekeratne, M., Shakhparonov, M. I., & Modyanov, N. N. (2002). Nongastric H,K-ATPase in rodent prostate: lobe-specific expression and apical localization. American Journal of Physiology. Cell Physiology, 282, C907–C916.

    PubMed  CAS  Google Scholar 

  22. Muth, T. R., Gottardi, C. J., Roush, D. L., & Caplan, M. J. (1998). A basolateral sorting signal is encoded in the alpha -subunit of Na,K-ATPase. American Journal of Physiology. Cell Physiology, 274, C688–C696.

    CAS  Google Scholar 

  23. Gottardi, C. J., & Caplan, M. J. (1993). An ion-transporting ATPase encodes multiple apical localization signals. Journal of Cell Biology, 121, 283–293.

    PubMed  CAS  Google Scholar 

  24. Lerner, M., Lemke, D., Bertram, H., Schillers, H., Oberleithner, H., Caplan, M. J., & Reinhardt, J. (2006). An extracellular loop of the human non-gastric H,K-ATPase alpha-subunit is involved in apical plasma membrane polarization. Cellular Physiology and Biochemistry, 18, 75–84.

    PubMed  CAS  Google Scholar 

  25. Dunbar, L. A., Aronson, P., & Caplan, M. J. (2000). A transmembrane segment determines the steady-state localization of an ion-transporting adenosine triphosphatase. Journal of Cell Biology, 148, 769–778.

    PubMed  CAS  Google Scholar 

  26. Nelson, W. J., & Hammerton, R. W. (1989). A membrane-cytoskeletal complex containing Na+,K+-ATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK). cells: implications for the biogenesis of epithelial cell polarity. Journal of Cell Biology, 108, 893–902.

    PubMed  CAS  Google Scholar 

  27. Morrow, J. S., Cianci, C. D., Ardito, T., Mann, A. S., & Kashgarian, M. (1989). Ankyrin links fodrin to the alpha subunit of Na,K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. Journal of Cell Biology, 108, 455–465.

    PubMed  CAS  Google Scholar 

  28. Koob, R., Zimmermann, M., Schoner, W., & Drenckhahn, D. (1988). Colocalization and coprecipitation of ankyrin and Na+,K+-ATPase in kidney epithelial cells. European Journal of Cell Biology, 45, 230–237.

    PubMed  CAS  Google Scholar 

  29. Devarajan, P., Stabach, P. R., De Matteis, M. A., & Morrow, J. S. (1997). Na,K-ATPase transport from endoplasmic reticulum to Golgi requires the Golgi spectrin-ankyrin G119 skeleton in Madin Darby canine kidney cells. Proceedings of National Academic Science of the United States of America, 94, 10711–10716.

    CAS  Google Scholar 

  30. Mays, R. W., Siemers, K. A., Fritz, B. A., Lowe, A. W., van Meer, G., & Nelson, W. J. (1995). Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells. Journal of Cell Biology, 130, 1105–1115.

    PubMed  CAS  Google Scholar 

  31. Nguyen, N. V., Gleeson, P. A., Courtois-Coutry, N., Caplan, M. J., & Van Driel, I. R. (2004). Gastric parietal cell acid secretion in mice can be regulated independently of H/K ATPase endocytosis. Gastroenterology, 127, 145–154.

    PubMed  CAS  Google Scholar 

  32. Roush, D. L., Gottardi, C. J., Naim, H. Y., Roth, M. G., & Caplan, M. J. (1998). Tyrosine-based membrane protein sorting signals are differentially interpreted by polarized Madin-Darby canine kidney and LLC-PK1 epithelial cells. Journal of Biological Chemistry, 273, 26862–26869.

    PubMed  CAS  Google Scholar 

  33. Vagin, O., Turdikulova, S., Yakubov, I., & Sachs, G. (2005). Use of the H,K-ATPase beta subunit to identify multiple sorting pathways for plasma membrane delivery in polarized cells. Journal of Biological Chemistry, 280, 14741–14754.

    PubMed  CAS  Google Scholar 

  34. Ritter, B., Denisov, A. Y., Philie, J., Deprez, C., Tung, E. C., Gehring, K., & McPherson, P. S. (2004). Two WXXF-based motifs in NECAPs define the specificity of accessory protein binding to AP-1 and AP-2. EMBO Journal, 23, 3701–3710.

    PubMed  CAS  Google Scholar 

  35. Ritter, B., Philie, J., Girard, M., Tung, E. C., Blondeau, F., & McPherson, P. S. (2003). Identification of a family of endocytic proteins that define a new alpha-adaptin ear-binding motif. EMBO Reports, 4, 1089–1095.

    PubMed  CAS  Google Scholar 

  36. Helenius, A., & Aebi, M. (2001). Intracellular functions of N-linked glycans. Science, 291, 2364–2369.

    PubMed  CAS  Google Scholar 

  37. Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73, 1019–1049.

    PubMed  CAS  Google Scholar 

  38. Kudo, M., & Canfield, W. M. (2006). Structural requirements for efficient processing and activation of recombinant human UDP-N-acetylglucosamine:lysosomal-enzyme-N-acetylglucosamine-1-phosphotransferase. Journal of Biological Chemistry, 281, 11761–11768.

    PubMed  CAS  Google Scholar 

  39. Geering, K. (2001). The functional role of beta subunits in oligomeric P-type ATPases. Journal of Bioenergetics and Biomembrane, 33, 425–438.

    CAS  Google Scholar 

  40. Kleizen, B., & Braakman, I. (2004). Protein folding and quality control in the endoplasmic reticulum. Current Opinion in Cell Biology, 16, 343–349.

    PubMed  CAS  Google Scholar 

  41. Bosques, C. J., Tschampel, S. M., Woods, R. J., & Imperiali, B. (2004). Effects of glycosylation on peptide conformation: A synergistic experimental and computational study. Journal of the American Chemical Society, 126, 8421–8425.

    PubMed  CAS  Google Scholar 

  42. Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A., & Wormald, M. R. (2004). Statistical analysis of the protein environment of N-glycosylation sites: Implications for occupancy, structure, and folding. Glycobiology, 14, 103–114.

    PubMed  CAS  Google Scholar 

  43. Imperiali, B., & O’Connor, S. E. (1999). Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Current Opinion in Cell Biology, 3, 643–649.

    CAS  Google Scholar 

  44. Kundra, R., & Kornfeld, S. (1999). Asparagine-linked oligosaccharides protect Lamp-1 and Lamp-2 from intracellular proteolysis. J Biol Chem., 274, 31039–31046.

    PubMed  CAS  Google Scholar 

  45. Crothers, J. M. Jr., Asano, S., Kimura, T., Yoshida, A., Wong, A., Kang, J. W., & Forte, J. G. (2004). Contribution of oligosaccharides to protection of the H,K-ATPase beta-subunit against trypsinolysis. Electrophoresis, 25, 2586–2592.

    PubMed  CAS  Google Scholar 

  46. Beggah, A. T., Jaunin, P., & Geering, K. (1997). Role of glycosylation and disulfide bond formation in the beta subunit in the folding and functional expression of Na,K-ATPase. Journal of Biological Chemistry, 272, 10318–10326.

    PubMed  CAS  Google Scholar 

  47. van Anken, E., & Braakman, I. (2005). Versatility of the endoplasmic reticulum protein folding factory. Critical Reviews in Biochemistry and Molecular Biology, 40, 191–228.

    PubMed  Google Scholar 

  48. Haas, I. G., & Wabl, M. (1983). Immunoglobulin heavy chain binding protein. Nature, 306, 387–389.

    PubMed  CAS  Google Scholar 

  49. Lee, Y. K., Brewer, J. W., Hellman, R., & Hendershot, L. M. (1999). BiP and immunoglobulin light chain cooperate to control the folding of heavy chain and ensure the fidelity of immunoglobulin assembly. Cellular and Molecular Biology, 10, 2209–2219.

    CAS  Google Scholar 

  50. Beggah, A., Mathews, P., Beguin, P., & Geering, K. (1996). Degradation and endoplasmic reticulum retention of unassembled alpha- and beta-subunits of Na,K-ATPase correlate with interaction of BiP. Journal of Biological Chemistry, 271, 20895–20902.

    PubMed  CAS  Google Scholar 

  51. Laughery, M. D., Todd, M. L., & Kaplan, J. H. (2003). Mutational analysis of alpha-beta subunit interactions in the delivery of Na,K-ATPase heterodimers to the plasma membrane. Journal of Biological Chemistry, 278, 34794–34803.

    PubMed  CAS  Google Scholar 

  52. Jaunin, P., Jaisser, F., Beggah, A. T., Takeyasu, K., Mangeat, P., Rossier, B. C., Horisberger, J. D., & Geering, K. (1993). Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na,K-pumps. Journal of Cell Biology, 123, 1751–1759.

    PubMed  CAS  Google Scholar 

  53. Horisberger, J. D., Jaunin, P., Reuben, M. A., Lasater, L. S., Chow, D. C., Forte, J. G., Sachs, G., Rossier, B. C., & Geering, K. (1991). The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps. Journal of Biological Chemistry, 266, 19131–19134.

    PubMed  CAS  Google Scholar 

  54. Vagin, O., Denevich, S., & Sachs, G. (2003). Plasma membrane delivery of the gastric H,K-ATPase: The role of {beta}-subunit glycosylation. American Journal of Physiology. Cell Physiology, 285, C968-C976.

    PubMed  CAS  Google Scholar 

  55. Vagin, O., Turdikulova, S., & Sachs, G. (2004). The H,K-ATPase beta subunit as a model to study the role of N-glycosylation in membrane trafficking and apical sorting. Journal of Biological Chemistry, 279, 39026–39034.

    PubMed  CAS  Google Scholar 

  56. Asano, S., Kawada, K., Kimura, T., Grishin, A. V., Caplan, M. J., & Takeguchi, N. (2000). The roles of carbohydrate chains of the beta-subunit on the functional expression of gastric H(+),K(+)-ATPase. Journal of Biological Chemistry, 275, 8324–8330.

    PubMed  CAS  Google Scholar 

  57. Geering, K., Beggah, A., Good, P., Girardet, S., Roy, S., Schaer, D., & Jaunin, P. (1996). Oligomerization and maturation of Na,K-ATPase: functional interaction of the cytoplasmic NH2 terminus of the beta subunit with the alpha subunit. Journal of Cell Biology, 133, 1193–1204.

    PubMed  CAS  Google Scholar 

  58. Hebert, D. N., Zhang, J. X., Chen, W., Foellmer, B., & Helenius, A. (1997). The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. Journal of Cell Biology, 139, 613–623.

    PubMed  CAS  Google Scholar 

  59. Klaassen, C. H., Fransen, J. A., Swarts, H. G., & De Pont, J. J. (1997). Glycosylation is essential for biosynthesis of functional gastric H+,K+- ATPase in insect cells. The Biochemical Journal, 321, 419–424.

    PubMed  CAS  Google Scholar 

  60. Ikonen, E., & Simons, K. (1998). Protein and lipid sorting from the trans-Golgi network to the plasma membrane in polarized cells. Seminars in Cell & Developmental Biology, 9, 503–509.

    CAS  Google Scholar 

  61. Nelson, W. J., & Yeaman, C. (2001). Protein trafficking in the exocytic pathway of polarized epithelial cells. Trends in Cell Biology, 11, 483–486.

    PubMed  CAS  Google Scholar 

  62. Mostov, K., Su, T., & ter Beest, M. (2003). Polarized epithelial membrane traffic: Conservation and plasticity. Natural Cell Biology, 5, 287–293.

    CAS  Google Scholar 

  63. Nelson W. J., & Rodriguez-Boulan E. (2004). Unravelling protein sorting. Natural Cell Biology, 6, 282–284.

    CAS  Google Scholar 

  64. Rodriguez-Boulan, E., Musch, A., & Le Bivic, A. (2004). Epithelial trafficking: New routes to familiar places. Current Opinion in Cell Biology, 16, 436–442.

    PubMed  CAS  Google Scholar 

  65. Potter, B. A., Weixel, K. M., Bruns, J. R., Ihrke, G., & Weisz, O. A. (2006). N-Glycans mediate apical recycling of the sialomucin endolyn in polarized MDCK Cells. Traffic, 7, 146–154.

    PubMed  CAS  Google Scholar 

  66. Traub, L. M., & Kornfeld, S. (1997). The trans-Golgi network: A late secretory sorting station. Current Opinion in Cell Biology, 9, 527–533.

    PubMed  CAS  Google Scholar 

  67. Yeaman, C., Grindstaff, K. K., & Nelson, W. J. (1999). New perspectives on mechanisms involved in generating epithelial cell polarity. Physiology Review, 79, 73–98.

    CAS  Google Scholar 

  68. Campo, C., Mason, A., Maouyo, D., Olsen, O., Yoo, D., & Welling, P. A. (2005). Molecular mechanisms of membrane polarity in renal epithelial cells. Reviews of Physiology, Biochemistry and Pharmacology, 153, 47–99.

    PubMed  CAS  Google Scholar 

  69. Rodriguez-Boulan, E., Kreitzer, G., & Musch, A. (2005). Organization of vesicular trafficking in epithelia. Nature Reviews. Molecular Cell Biology, 6, 233–247.

    PubMed  CAS  Google Scholar 

  70. Fiedler, K., & Simons, K. (1995). The role of N-glycans in the secretory pathway. Cell, 81, 309–312.

    PubMed  CAS  Google Scholar 

  71. Hara-Kuge, S., Ohkura, T., Ideo, H., Shimada, O., Atsumi, S., & Yamashita, K. (2002). Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin-Darby canine kidney (MDCK) cells. Journal of Biological Chemistry, 277, 16332–16339.

    PubMed  CAS  Google Scholar 

  72. Hara-Kuge, S., Seko, A., Shimada, O., Tosaka-Shimada, H., & Yamashita, K. (2004). The binding of VIP36 and alpha-amylase in the secretory vesicles via high-mannose type glycans. Glycobiology, 14, 739–744.

    PubMed  CAS  Google Scholar 

  73. Hara-Kuge, S., Ohkura, T., Seko, A., & Yamashita, K. (1999). Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1–>2 mannosyl residues in MDCK cells. Glycobiology, 9, 833–839.

    PubMed  CAS  Google Scholar 

  74. Delacour, D., Cramm-Behrens, C. I., Drobecq, H., Le Bivic, A., Naim, H. Y., & Jacob, R. (2006). Requirement for galectin-3 in apical protein sorting. Current Biology, 16, 408–414.

    PubMed  CAS  Google Scholar 

  75. Fullekrug, J., & Simons, K. (2004). Lipid rafts and apical membrane traffic. Annals of the N Y Academic of Sciences, 1014, 164–169.

    Google Scholar 

  76. Simons, K., & Vaz, W. L. (2004). Model systems, lipid rafts, and cell membranes. Annual Review of Biophysics and Biomolecular Structure, 33, 269–295.

    PubMed  CAS  Google Scholar 

  77. Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.

    PubMed  CAS  Google Scholar 

  78. Schuck, S., & Simons, K. (2004). Polarized sorting in epithelial cells: Raft clustering and the biogenesis of the apical membrane. Journal of Cell Science, 117, 5955–5964.

    PubMed  CAS  Google Scholar 

  79. Scheiffele, P., Verkade, P., Fra, A. M., Virta, H., Simons, K., & Ikonen, E. (1998). Caveolin-1 and -2 in the exocytic pathway of MDCK cells. Journal of Cell Biology, 140, 795–806.

    PubMed  CAS  Google Scholar 

  80. Nelson, W. J., & Veshnock, P. J. (1987). Ankyrin binding to (Na++ K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature, 328, 533–536.

    PubMed  CAS  Google Scholar 

  81. Vagin, O., Tokhtaeva, E., and Sachs, G. (2006). The role of the beta -1 subunit of the Na,K-ATPase and its glycosylation in cell–cell adhesion. Journal of Biological Chemistry, M606507200.

  82. Nose, A., Nagafuchi, A., & Takeichi, M. (1988). Expressed recombinant cadherins mediate cell sorting in model systems. Cell, 54, 993–1001.

    PubMed  CAS  Google Scholar 

  83. Huber, A. H., Stewart, D. B., Laurents, D. V., Nelson, W. J., & Weis, W. I. (2001). The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. Journal of Biological Chemistry, 276, 12301–12309.

    PubMed  CAS  Google Scholar 

  84. Devarajan, P., Scaramuzzino, D. A., & Morrow, J. S. (1994). Ankyrin binds to two distinct cytoplasmic domains of Na,K-ATPase alpha subunit. Proceedings of National Academic Science United States of America, 91, 2965–2969.

    CAS  Google Scholar 

  85. Farquhar, M. G., & Palade, G. E. (1963). Junctional complexes in various epithelia. Journal of Cell Biology, 17, 375–412.

    PubMed  CAS  Google Scholar 

  86. Tsukita, S., Furuse, M., & Itoh, M. (2001). Multifunctional strands in tight junctions. Nature Reviews. Molecular and Cell Biology, 2, 285–293.

    CAS  Google Scholar 

  87. Huber, M. A., Kraut, N., & Beug, H. (2005). Molecular requirements for epithelial-mesenchymal transition during tumor progression. Current Opinion of Cell Biology, 17, 548–558.

    CAS  Google Scholar 

  88. Lee, D. B., Huang, E., & Ward, H. J. (2006). Tight junction biology and kidney dysfunction. American Journal of Physiology. Renal Physiology, 290, F20–F34.

    PubMed  CAS  Google Scholar 

  89. Popov, Z., Gil-Diez de Medina, S., Lefrere-Belda, M. A., Hoznek, A., Bastuji-Garin, S., Abbou, C. C., Thiery, J. P., Radvanyi, F., & Chopin, D. K. (2000). Low E-cadherin expression in bladder cancer at the transcriptional and protein level provides prognostic information. Bristish Journal of Cancer, 83, 209–214.

    CAS  Google Scholar 

  90. Eddy, A. A. (1996). Molecular insights into renal interstitial fibrosis. Journal of the American Society of Nephrology 7, 2495–2508.

    PubMed  CAS  Google Scholar 

  91. Kwon, O., Nelson, W. J., Sibley, R., Huie, P., Scandling, J. D., Dafoe, D., Alfrey, E., & Myers, B. D. (1998). Backleak, tight junctions, and cell–cell adhesion in postischemic injury to the renal allograft. The Journal of Clincal Investment, 101, 2054–2064.

    Article  CAS  Google Scholar 

  92. Bonventre, J. V. (2003). Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. Journal of the American Society of Nephrology, 14(Suppl 1), S55–61.

    PubMed  Google Scholar 

  93. Contreras, R. G., Shoshani, L., Flores-Maldonado, C., Lazaro, A., & Cereijido, M. (1999). Relationship between Na(+),K(+)-ATPase and cell attachment. Journal of Cell Science, 112(Pt 23), 4223–4232.

    PubMed  CAS  Google Scholar 

  94. Contreras, R. G., Flores-Maldonado, C., Lazaro, A., Shoshani, L., Flores-Benitez, D., Larre, I., & Cereijido, M. (2004). Ouabain binding to Na+,K+-ATPase relaxes cell attachment and sends a specific signal (NACos) to the nucleus. Journal of Membrane Biology, 198, 147–158.

    PubMed  CAS  Google Scholar 

  95. Larre, I., Ponce, A., Fiorentino, R., Shoshani, L., Contreras, R. G., & Cereijido, M. (2006). Contacts and cooperation between cells depend on the hormone ouabain. Proceedings of National Academic Science United States of America, 103, 10911–10916.

    CAS  Google Scholar 

  96. Rajasekaran, S. A., Palmer, L. G., Moon, S. Y., Peralta Soler, A., Apodaca, G. L., Harper, J. F., Zheng, Y., & Rajasekaran, A. K. (2001). Na,K-ATPase activity is required for formation of tight junctions, desmosomes, and induction of polarity in epithelial cells. Cellular and Molecular Biology, 12, 3717–3732.

    CAS  Google Scholar 

  97. Rajasekaran, A. K., & Rajasekaran, S. A. (2003). Role of Na,K-ATPase in the assembly of tight junctions. American Journal of Physiology. Renal Physiology, 285, F388–F396.

    PubMed  Google Scholar 

  98. Rajasekaran, S. A., Hu, J., Gopal, J., Gallemore, R., Ryazantsev, S., Bok, D., & Rajasekaran, A. K. (2003). Na,K-ATPase inhibition alters tight junction structure and permeability in human retinal pigment epithelial cells. American Journal of Physiology. Renal Physiology, 284, C1497–C1507.

    CAS  Google Scholar 

  99. Rajasekaran, S. A., Gopal, J., Espineda, C., Ryazantsev, S., Schneeberger, E. E., & Rajasekaran, A. K. (2004). HPAF-II, a cell culture model to study pancreatic epithelial cell structure and function. Pancreas, 29, e77–e83.

    PubMed  Google Scholar 

  100. Rajasekaran, S. A., Palmer, L. G., Quan, K., Harper, J. F., Ball, W. J. Jr., Bander, N. H., Peralta Soler, A., & Rajasekaran, A. K. (2001). Na,K-ATPase beta-subunit is required for epithelial polarization, suppression of invasion, and cell motility. Cellular and Molecular Biology, 12, 279–295.

    CAS  Google Scholar 

  101. Shoshani, L., Contreras, R. G., Roldan, M. L., Moreno, J., Lazaro, A., Balda, M. S., Matter, K., & Cereijido, M. (2005). The polarized expression of Na+,K+-ATPase in epithelia depends on the association between beta-subunits located in neighboring cells. Cellular and Molecular Biology, 16, 1071–1081.

    CAS  Google Scholar 

  102. Rajasekaran, S. A., Gopal, J., Willis, D., Espineda, C., Twiss, J. L., & Rajasekaran, A. K. (2004). Na,K-ATPase beta1-subunit increases the translation efficiency of the alpha1-subunit in MSV-MDCK cells. Cellular and Molecular Biology, 15, 3224–3232.

    CAS  Google Scholar 

  103. Gloor, S., Antonicek, H., Sweadner, K. J., Pagliusi, S., Frank, R., Moos, M., & Schachner, M. (1990). The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na,K-ATPase. Journal of Cell Biology, 110, 165–174.

    PubMed  CAS  Google Scholar 

  104. Vagin, O., Turdikulova, S., & Sachs, G. (2005). Recombinant addition of N-glycosylation sites to the basolateral Na,K-ATPase beta1 subunit results in its clustering in caveolae and apical sorting in HGT-1 cells. Journal of Biological Chemistry, 280, 43159–43167.

    PubMed  CAS  Google Scholar 

  105. Wilson, P. D., Sherwood, A. C., Palla, K., Du, J., Watson, R., & Norman, J. T. (1991). Reversed polarity of Na(+) -K(+) -ATPase: mislocation to apical plasma membranes in polycystic kidney disease epithelia. American Journal of Physiology, 260, F420–F430.

    PubMed  CAS  Google Scholar 

  106. Rajasekaran, S. A., Ball, W. J. Jr., Bander, N. H., Liu, H., Pardee, J. D., & Rajasekaran, A. K. (1999). Reduced expression of beta-subunit of Na,K-ATPase in human clear-cell renal cell carcinoma. Journal of Urology, 162, 574–580.

    PubMed  CAS  Google Scholar 

  107. Espineda, C., Seligson, D. B., James Ball, W. Jr., Rao, J., Palotie, A., Horvath, S., Huang, Y., Shi, T., & Rajasekaran, A. K. (2003). Analysis of the Na,K-ATPase alpha- and beta-subunit expression profiles of bladder cancer using tissue microarrays. Cancer, 97, 1859–1868.

    PubMed  CAS  Google Scholar 

  108. Espineda, C. E., Chang, J. H., Twiss, J., Rajasekaran, S. A., & Rajasekaran, A. K. (2004). Repression of Na,K-ATPase beta1-subunit by the transcription factor snail in carcinoma. Cellular and Molecular Biology, 15, 1364–1373.

    CAS  Google Scholar 

  109. Vestweber, D., & Kemler, R. (1985). Identification of a putative cell adhesion domain of uvomorulin. EMBO Journal, 4, 3393–3398.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author thank Dr. George Sachs for careful reading of the manuscript and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Vagin.

Additional information

Supported in part by NIH grants DK46917, DK58333, D53642, and USVA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vagin, O., Turdikulova, S. & Tokhtaeva, E. Polarized membrane distribution of potassium-dependent ion pumps in epithelial cells: Different roles of the N-glycans of their β subunits. Cell Biochem Biophys 47, 376–391 (2007). https://doi.org/10.1007/s12013-007-0033-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0033-6

Keywords

Navigation