Skip to main content

Advertisement

Log in

The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular “mechanotransduction” mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J. C., & Watt, F. M. (1993). Regulation of development and differentiation by the extracellular matrix. Development, 117(4), 1183–1198.

    PubMed  CAS  Google Scholar 

  2. Aikawa, M., Kim, H. S., Kuro-o, M., Manabe, I., Watanabe, M., Yamaguchi, H., Yazaki, Y., & Nagai, R. (1995). Phenotypic modulation of smooth muscle cells during progression of human atherosclerosis as determined by altered expression of myosin heavy chain isoforms. Annals of the New York Academy of Sciences, 748, 578–585.

    PubMed  CAS  Google Scholar 

  3. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Zhu, W., Kadowaki, T., & Yazaki, Y. (1999). Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circulation Research, 84(4), 458–466.

    PubMed  CAS  Google Scholar 

  4. Aikawa, M., Sakomura, Y., Ueda, M., Kimura, K., Manabe, I., Ishiwata, S., Komiyama, N., Yamaguchi, H., Yazaki, Y., & Nagai, R. (1997). Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation, 96(1), 82–90.

    PubMed  CAS  Google Scholar 

  5. Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science STKE, 2002(119), PE6.

    Google Scholar 

  6. Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467–2477.

    PubMed  CAS  Google Scholar 

  7. Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., & Kaibuchi, K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science, 275(5304), 1308–1311.

    PubMed  CAS  Google Scholar 

  8. Aoki, H., Izumo, S., & Sadoshima, J. (1998). Angiotensin II activates RhoA in cardiac myocytes: A critical role of RhoA in angiotensin II-induced premyofibril formation. Circulation Research, 82(6), 666–676.

    PubMed  CAS  Google Scholar 

  9. Arthur, W. T., & Burridge, K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the Cell, 12(9), 2711–2720.

    PubMed  CAS  Google Scholar 

  10. Arthur, W. T., Petch, L. A., & Burridge, K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology, 10(12), 719–722.

    PubMed  CAS  Google Scholar 

  11. Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., & Geiger, B. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466–472.

    PubMed  CAS  Google Scholar 

  12. Banes, A. J., Tsuzaki, M., Yamamoto, J., Fischer, T., Brigman, B., Brown, T., & Miller, L. (1995). Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochemistry and Cell Biology, 73(7–8), 349–365.

    PubMed  CAS  Google Scholar 

  13. Barry, S. T., Flinn, H. M., Humphries, M. J., Critchley, D. R., & Ridley, A. J. (1997). Requirement for Rho in integrin signalling. Cell Adhesion and Communication, 4(6), 387–398.

    PubMed  CAS  Google Scholar 

  14. Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., & Wang, Y. L. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. Journal of Cell Biology, 153(4), 881–888.

    PubMed  CAS  Google Scholar 

  15. Bernard, M. P., Myers, J. C., Chu, M. L., Ramirez, F., Eikenberry, E. F., & Prockop, D. J. (1983). Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I). identifies structurally conserved features of the protein and the gene. Biochemistry, 22(5), 1139–1145.

    PubMed  CAS  Google Scholar 

  16. Bershadsky, A. D., Balaban, N. Q., & Geiger, B. (2003). Adhesion-dependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology, 19, 677–695.

    PubMed  CAS  Google Scholar 

  17. Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16), 9274–9279.

    CAS  Google Scholar 

  18. Brangwynne, C. P., Mackintosh, F. C., Kumar, S., Geisse, N. A., Talbot, J., Mahadevan, L., Parker, K. K., Ingber, D. E., & Weitz, D. A. (2006). Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology, 173(5), 733–741.

    PubMed  CAS  Google Scholar 

  19. Brown, E., McKee, T., diTomaso, E., Pluen, A., Seed, B., Boucher, Y., & Jain, R. K. (2003). Dynamic imaging of collagen and its modulation in tumors in␣vivo using second-harmonic generation. Nature Medicine, 9(6), 796–800.

    PubMed  CAS  Google Scholar 

  20. Brown, X. Q., Ookawa, K., & Wong, J. Y. (2005). Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials, 26(16), 3123–3129.

    PubMed  CAS  Google Scholar 

  21. Bryant, S. J., & Anseth, K. S. (2002). Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. Journal of Biomedical Material Research, 59(1), 63–72.

    CAS  Google Scholar 

  22. Bryant, S. J., & Anseth, K. S. (2003). Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Journal of Biomedical Material Research A, 64(1), 70–79.

    Google Scholar 

  23. Bryant, S. J., Bender, R. J., Durand, K. L., & Anseth, K. S. (2004). Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnology and Bioengineering, 86(7), 747–755.

    PubMed  CAS  Google Scholar 

  24. Burdick, J. A., & Anseth, K. S. (2002). Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 23(22), 4315–4323.

    PubMed  CAS  Google Scholar 

  25. Burdick, J. A., Khademhosseini, A., & Langer, R. (2004). Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20(13), 5153–5156.

    PubMed  CAS  Google Scholar 

  26. Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.

    PubMed  CAS  Google Scholar 

  27. Chen, J., Fabry, B., Schiffrin, E. L., & Wang, N. (2001). Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology Cell Physiology, 280(6), C1475–C1484.

    PubMed  CAS  Google Scholar 

  28. Chen, K. D., Li, Y. S., Kim, M., Li, S., Yuan, S., Chien, S., & Shyy, J. Y. (1999). Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. Journal of Biological Chemistry, 274(26), 18393–18400.

    PubMed  CAS  Google Scholar 

  29. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428.

    PubMed  CAS  Google Scholar 

  30. Chicurel, M. E., Chen, C. S., & Ingber, D. E. (1998). Cellular control lies in the balance of forces. Current Opinion in Cell Biology, 10(2), 232–239.

    PubMed  CAS  Google Scholar 

  31. Chiquet, M. (1999). Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology, 18(5), 417–426.

    PubMed  CAS  Google Scholar 

  32. Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., & Chiquet-Ehrismann, R. (1996). Regulation of extracellular matrix synthesis by mechanical stress. Biochemistry and Cell Biology, 74(6), 737–744.

    PubMed  CAS  Google Scholar 

  33. Chiquet, M., Renedo, A. S., Huber, F., & Fluck, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73–80.

    PubMed  CAS  Google Scholar 

  34. Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., & Schwartz, M. A. (1994). The small GTP-binding protein Rho regulates a phosphatidylinositol 4- phosphate 5-kinase in mammalian cells. Cell, 79(3), 507–513.

    PubMed  CAS  Google Scholar 

  35. Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 88(1), 39–48.

    PubMed  CAS  Google Scholar 

  36. Chrzanowska-Wodnicka, M., Burridge, K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. Journal of Cell Biology, 133(6), 1403–1415.

    PubMed  CAS  Google Scholar 

  37. Clark, E. A., King, W. G., Brugge, J. S., Symons, M., & Hynes, R. O. (1998). Integrin-mediated signals regulated by members of the rho family of GTPases. Journal of Cell Biology, 142(2), 573–586.

    PubMed  CAS  Google Scholar 

  38. Cook, T. A., Nagasaki, T., & Gundersen, G. G. (1998). Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. Journal of Cell Biology, 141(1), 175–185.

    PubMed  CAS  Google Scholar 

  39. Cotran, R. S., Kumar, V., & Collins, T. (1999) Robbins pathologic basis of disease (6th ed.). Philadelphia: W.B. Saunders, p. 1425.

  40. Cukierman, E., Pankov, R., Stevens, D. R., & Yamada, K. M. (2001). Taking cell-matrix adhesions to the third dimension. Science, 294(5547), 1708–1712.

    PubMed  CAS  Google Scholar 

  41. Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of Cell Science, 93(Pt 2), 255–266.

    PubMed  CAS  Google Scholar 

  42. Darling, E. M., & Athanasiou, K. A. (2003). Articular cartilage bioreactors and bioprocesses. Tissue Engineering, 9(1), 9–26.

    PubMed  CAS  Google Scholar 

  43. Davis, G. E., Bayless, K. J., & Mavila, A. (2002). Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anatomical Record, 268(3), 252–275.

    PubMed  CAS  Google Scholar 

  44. Dedhar, S., Ruoslahti, E., & Pierschbacher, M. D. (1987). A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. Journal of Cell Biology, 104(3), 585–593.

    PubMed  CAS  Google Scholar 

  45. Deroanne, C. F., Lapiere, C. M., & Nusgens, B. V. (2001). In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovascular Research, 49(3), 647–658.

    PubMed  CAS  Google Scholar 

  46. Dikovsky, D., Bianco-Peled, H., & Seliktar, D. (2006). The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials, 27(8), 1496–1506.

    PubMed  CAS  Google Scholar 

  47. DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M., & Lauffenburger, D. A. (1993). Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. Journal of Cell Biology, 122(3), 729–737.

    PubMed  CAS  Google Scholar 

  48. Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.

    PubMed  CAS  Google Scholar 

  49. Duncan, R. L. (1995). Transduction of mechanical strain in bone. ASGSB Bulletin, 8(2), 49–62.

    PubMed  CAS  Google Scholar 

  50. Dvorak, H. F., Senger, D. R., & Dvorak, A. M. (1983). Fibrin as a component of the tumor stroma: Origins and biological significance. Cancer Metastasis Reviews, 2(1), 41–73.

    PubMed  CAS  Google Scholar 

  51. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.

    PubMed  CAS  Google Scholar 

  52. Elisseeff, J., Anseth, K., Sims, D., McIntosh, W., Randolph, M., & Langer, R. (1999). Transdermal photopolymerization for minimally invasive implantation. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3104–3107.

    PubMed  CAS  Google Scholar 

  53. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86(1 Pt 1), 617–628.

    PubMed  CAS  Google Scholar 

  54. Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 166(6), 877–887.

    PubMed  CAS  Google Scholar 

  55. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    PubMed  CAS  Google Scholar 

  56. Enomoto, T. (1996). Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: Possible involvement of the rho signal cascade. Cell Structure and Function, 21(5), 317–326.

    Article  PubMed  CAS  Google Scholar 

  57. Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.

    PubMed  CAS  Google Scholar 

  58. Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R., & Sheetz, M. P. (1999). Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biology, 1(4), 200–206.

    PubMed  CAS  Google Scholar 

  59. Folkman, J., & Moscona, A. (1978). Role of cell shape in growth control. Nature, 273(5661), 345–349.

    PubMed  CAS  Google Scholar 

  60. Freyman, T. M., Yannas, I. V., Yokoo, R., & Gibson, L. J. (2002). Fibroblast contractile force is independent of the stiffness which resists the contraction. Experimental Cell Research, 272(2), 153–162.

    PubMed  CAS  Google Scholar 

  61. Fringer, J., & Grinnell, F. (2001). Fibroblast quiescence in floating or released collagen matrices: Contribution of the ERK signaling pathway and actin cytoskeletal organization. Journal of Biological Chemistry, 276(33), 31047–31052.

    PubMed  CAS  Google Scholar 

  62. Fritz, G., Just, I., & Kaina, B. (1999). Rho GTPases are over-expressed in human tumors. International Journal of Cancer, 81(5), 682–687.

    CAS  Google Scholar 

  63. Fuller, B. (1961). Tensegrity. Portfolio Artnews Annual, 4, 112–127.

    Google Scholar 

  64. Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer-Verlag, p 568.

  65. Galbraith, C. G., & Sheetz, M. P. (1998). Forces on adhesive contacts affect cell function. Current Opinion in Cell Biology, 10(5), 566–571.

    PubMed  CAS  Google Scholar 

  66. Galbraith, C. G., Yamada, K. M., & Sheetz, M. P. (2002). The relationship between force and focal complex development. Journal of Cell Biology, 159(4), 695–705.

    PubMed  CAS  Google Scholar 

  67. Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161–167.

    PubMed  CAS  Google Scholar 

  68. Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.

    PubMed  Google Scholar 

  69. Ghajar, C. M., Blevins, K. S., Hughes, C. C. W., George, S. C., & Putnam, A. J. (2006). Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early MMP upregulation. Tissue Engineering, 12(10), 2875–2888.

    Google Scholar 

  70. Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.

    PubMed  CAS  Google Scholar 

  71. Gobin, A. S., & West, J. L. (2002). Cell migration through defined, synthetic ECM analogs. FASEB Journal, 16(7), 751–753.

    PubMed  CAS  Google Scholar 

  72. Goldmann, W. H. (2002). Mechanical aspects of cell shape regulation and signaling. Cell Biology International, 26(4), 313–317.

    PubMed  CAS  Google Scholar 

  73. Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. Journal of Biomedical Materials Research A, 66(3), 605–614.

    Google Scholar 

  74. Grinnell, F. (2000). Fibroblast-collagen-matrix contraction: Growth-factor signalling and mechanical loading. Trends in Cell Biology, 10(9), 362–365.

    PubMed  CAS  Google Scholar 

  75. Grinnell, F. (2003). Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 13(5), 264–269.

    PubMed  CAS  Google Scholar 

  76. Gunn, J. W., Turner, S. D., & Mann, B. K. (2005). Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research A, 72(1), 91–97.

    Google Scholar 

  77. Guo, W. H., Frey, M. T., Burnham, N. A., & Wang, Y. L. (2006). Substrate rigidity regulates the formation and maintenance of tissues. Biophysical Journal, 90(6), 2213–2220.

    PubMed  CAS  Google Scholar 

  78. Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279(5350), 509–514.

    PubMed  CAS  Google Scholar 

  79. Halliday, N. L., & Tomasek, J. J. (1995). Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in␣vitro. Experimental Cell Research, 217(1), 109–117.

    PubMed  CAS  Google Scholar 

  80. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    PubMed  CAS  Google Scholar 

  81. Harris, A. K., Wild, P., & Stopak, D. (1980). Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science, 208(4440), 177–179.

    PubMed  CAS  Google Scholar 

  82. Hern, D. L., & Hubbell, J. A. (1998). Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. Journal of Biomedical Material Research, 39(2), 266–276.

    CAS  Google Scholar 

  83. Hu, S., Chen, J., Butler, J. P., & Wang, N. (2005). Prestress mediates force propagation into the nucleus. Biochemical and Biophysical Research Communication, 329(2), 423–428.

    CAS  Google Scholar 

  84. Hu, S., & Wang, N. (2006). Control of stress propagation in the cytoplasm by prestress and loading frequency. Molecular and Cellular Biomechanics, 3(2), 49–60.

    PubMed  Google Scholar 

  85. Huang, S., & Ingber, D. E. (1999). The structural and mechanical complexity of cell-growth control. Nature Cell Biology, 1(5), E131–E138.

    PubMed  CAS  Google Scholar 

  86. Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.

    PubMed  CAS  Google Scholar 

  87. Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.

    PubMed  CAS  Google Scholar 

  88. Ingber, D. E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, 91(10), 877–887.

    PubMed  CAS  Google Scholar 

  89. Ingber, D. E. (2003). Tensegrity II. How structural networks influence cellular information processing networks. Journal of Cell Science, 116(Pt 8), 1397–1408.

    PubMed  CAS  Google Scholar 

  90. Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 116(Pt 7), 1157–1173.

    PubMed  CAS  Google Scholar 

  91. Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827.

    PubMed  CAS  Google Scholar 

  92. Ingber, D. E., & Folkman, J. (1989). Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in␣vitro: role of extracellular matrix. Journal of Cell Biology, 109(1), 317–330.

    PubMed  CAS  Google Scholar 

  93. Ingber, D. E., Madri, J. A., & Jamieson, J. D. (1985). Neoplastic disorganization of pancreatic epithelial cell-cell relations. Role of basement membrane. American Journal of Pathology, 121(2), 248–260.

    PubMed  CAS  Google Scholar 

  94. Isenberg, B. C., & Tranquillo, R. T. (2003). Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Annals of Biomedical Engineering, 31(8), 937–949.

    PubMed  Google Scholar 

  95. Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9(6), 685–693.

    PubMed  CAS  Google Scholar 

  96. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.

    PubMed  CAS  Google Scholar 

  97. Katsumi, A., Milanini, J., Kiosses, W. B., del Pozo, M. A., Kaunas, R., Chien, S., Hahn, K. M., & Schwartz, M. A. (2002). Effects of cell tension on the small GTPase Rac. Journal of Cell Biology, 158(1), 153–164.

    PubMed  CAS  Google Scholar 

  98. Keeley, F. W., & Bartoszewicz, L. A. (1995). Elastin in systemic and pulmonary hypertension. Ciba Foundation Symposium, 192, 259–273; discussion 273–278.

    Google Scholar 

  99. Khademhosseini, A., Langer, R., Borenstein, J., & Vacanti, J. P. (2006). Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2480–2487.

    PubMed  CAS  Google Scholar 

  100. Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology Cell Physiology, 290(6), C1640–C1650.

    PubMed  CAS  Google Scholar 

  101. Kim, B. S., Nikolovski, J., Bonadio, J., & Mooney, D. J. (1999). Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 17(10), 979–983.

    PubMed  CAS  Google Scholar 

  102. Kim, B. S., Nikolovski, J., Bonadio, J., Smiley, E., & Mooney, D. J. (1999). Engineered smooth muscle tissues: Regulating cell phenotype with the scaffold. Experimental Cell Research, 251(2), 318–328.

    PubMed  CAS  Google Scholar 

  103. Kim, J. K., Xu, Y., Xu, X., Keene, D. R., Gurusiddappa, S., Liang, X., Wary, K. K., & Hook, M. (2005). A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. Journal of Biological Chemistry, 280(37), 32512–32520.

    PubMed  CAS  Google Scholar 

  104. Kim, Y. B., Yu, J., Lee, S. Y., Lee, M. S., Ko, S. G., Ye, S. K., Jong, H. S., Kim, T. Y., Bang, Y. J., & Lee, J. W. (2005). Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. Journal of Biological Chemistry, 280(31), 28357–28364.

    PubMed  CAS  Google Scholar 

  105. Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15(5), 378–386.

    PubMed  CAS  Google Scholar 

  106. Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., & Barnes, M. J. (1998). Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. Journal of Biological Chemistry, 273(50), 33287–33294.

    PubMed  CAS  Google Scholar 

  107. Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., & Barnes, M. J. (2000). The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. Journal of Biological Chemistry, 275(1), 35–40.

    PubMed  CAS  Google Scholar 

  108. Kolodney, M. S., & Elson, E. L. (1995). Contraction due␣to␣microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10252–10256.

    PubMed  CAS  Google Scholar 

  109. Kong, H. J., Wong, E., & Mooney, D. J. (2003). Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules, 36(12), 4582–4588.

    CAS  Google Scholar 

  110. Korff, T., & Augustin, H. G. (1999). Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of Cell Science, 112(Pt 19), 3249–3258.

    PubMed  CAS  Google Scholar 

  111. Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., & Ingber, D. E. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90(10), 3762–3773.

    PubMed  CAS  Google Scholar 

  112. Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.

    PubMed  CAS  Google Scholar 

  113. Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1879.

    PubMed  CAS  Google Scholar 

  114. Lehoux, S., Esposito, B., Merval, R., & Tedgui, A. (2005). Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation, 111(5), 643–649.

    PubMed  CAS  Google Scholar 

  115. Lehoux, S., & Tedgui, A. (1998). Signal transduction of mechanical stresses in the vascular wall. Hypertension, 32(2), 338–345.

    PubMed  CAS  Google Scholar 

  116. Li, C., & Xu, Q. (2000). Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal, 12(7), 435–445.

    PubMed  CAS  Google Scholar 

  117. Lin, Y. C., Ho, C. H., & Grinnell, F. (1998). Decreased PDGF receptor kinase activity in fibroblasts contracting stressed collagen matrices. Experimental Cell Research, 240(2), 377–387.

    PubMed  CAS  Google Scholar 

  118. Liu, V. A., & Bhatia, S. N. (2002). Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices, 4(4), 257–266.

    CAS  Google Scholar 

  119. Liu, B. P., Chrzanowska-Wodnicka, M., & Burridge, K. (1998). Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhesion and Communication, 5(4), 249–255.

    Article  PubMed  CAS  Google Scholar 

  120. Lo, C. M., Wang, H. B., Dembo, M., & Wang, Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1), 144–152.

    Article  PubMed  CAS  Google Scholar 

  121. Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 849–854.

    PubMed  CAS  Google Scholar 

  122. Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H., & West, J. L. (2001). Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials, 22(22), 3045–3051.

    PubMed  CAS  Google Scholar 

  123. Mann, B. K., & West, J. L. (2002). Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. Journal of Biomedical Material Research, 60(1), 86–93.

    CAS  Google Scholar 

  124. Martens, P. J., Bryant, S. J., & Anseth, K. S. (2003). Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 4(2), 283–292.

    PubMed  CAS  Google Scholar 

  125. Matthews, B. D., Overby, D. R., Mannix, R., & Ingber, D. E. (2006). Cellular adaptation to mechanical stress: Role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. Journal of Cell Science, 119(Pt 3), 508–518.

    PubMed  CAS  Google Scholar 

  126. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6(4), 483–495.

    PubMed  CAS  Google Scholar 

  127. Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S., & Ingber, D. (1992). Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cell Physiology, 151(3), 497–505.

    CAS  Google Scholar 

  128. Munevar, S., Wang, Y., & Dembo, M. (2001). Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophysical Journal, 80(4), 1744–1757.

    PubMed  CAS  Google Scholar 

  129. Munevar, S., Wang, Y. L., & Dembo, M. (2001). Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Molecular Biology of the Cell, 12(12), 3947–3954.

    PubMed  CAS  Google Scholar 

  130. Nehls, V., & Herrmann, R. (1996). The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvascular Research, 51(3), 347–364.

    PubMed  CAS  Google Scholar 

  131. Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J., & Jain, R. K. (2000). Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Research, 60(9), 2497–2503.

    PubMed  CAS  Google Scholar 

  132. Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307–4314.

    PubMed  CAS  Google Scholar 

  133. Nicolas, A., Geiger, B., & Safran, S. A. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12520–12525.

    PubMed  CAS  Google Scholar 

  134. Nikolovski, J., Kim, B. S., & Mooney, D. J. (2003). Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB Journal, 17, 455–457.

    Google Scholar 

  135. Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.

    PubMed  CAS  Google Scholar 

  136. Numaguchi, K., Eguchi, S., Yamakawa, T., Motley, E. D., & Inagami, T. (1999). Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circulation Research, 85(1), 5–11.

    PubMed  CAS  Google Scholar 

  137. Ogut, O., & Brozovich, F. V. (2003). Regulation of force in vascular smooth muscle. Journal of Molecular Cellular Cardiology, 35(4), 347–355.

    CAS  Google Scholar 

  138. Oldberg, A., Franzen, A., & Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin). cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(23), 8819–8823.

    PubMed  CAS  Google Scholar 

  139. Opas, M. (1989). Expression of the differentiated phenotype by epithelial cells in␣vitro is regulated by both biochemistry and mechanics of the substratum. Developmental Biology, 131(2), 281–293.

    PubMed  CAS  Google Scholar 

  140. Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.

    PubMed  CAS  Google Scholar 

  141. Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., & Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature, 385(6616), 537–540.

    PubMed  CAS  Google Scholar 

  142. Paszek, M. J., & Weaver, V. M. (2004). The tension mounts: mechanics meets morphogenesis and malignancy. Journal of Mammary Gland Biology and Neoplasia, 9(4), 325–342.

    PubMed  Google Scholar 

  143. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.

    PubMed  CAS  Google Scholar 

  144. Pelham, R. J. Jr., & Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13661–13665.

    PubMed  CAS  Google Scholar 

  145. Pelham, R. J. Jr., & Wang, Y. L. (1998). Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biological Bulletin, 194(3), 348–349; discussion 349–350.

    Google Scholar 

  146. Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R., & Bissell, M. J. (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9064–9068.

    PubMed  CAS  Google Scholar 

  147. Petit, V., & Thiery, J. P. (2000). Focal adhesions: Structure and dynamics. Biologie Cellulaire, 92(7), 477–494.

    CAS  Google Scholar 

  148. Peyton, S. R., & Putnam, A. J. (2005). Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. Journal of Cell Physiology, 204(1), 198–209.

    CAS  Google Scholar 

  149. Peyton, S. R., Raub, C. B., Keschrumrus, V. P., & Putnam, A. J. (2006). The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials, 27(28), 4881–4893.

    Google Scholar 

  150. Pierschbacher, M. D., Ruoslahti, E., Sundelin, J., Lind, P., & Peterson, P. A. (1982). The cell attachment domain of fibronectin. Determination of the primary structure. Journal of Biological Chemistry, 257(16), 9593–9597.

    PubMed  CAS  Google Scholar 

  151. Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. American Journal of Physiology Cell Physiology, 286(3), C518–C528.

    PubMed  CAS  Google Scholar 

  152. Powell, C. A., Smiley, B. L., Mills, J., & Vandenburgh, H. H. (2002). Mechanical stimulation improves tissue-engineered human skeletal muscle. American Journal of Physiology Cell Physiology, 283(5), C1557–C1565.

    PubMed  CAS  Google Scholar 

  153. Putnam, A. J., Cunningham, J. J., Dennis, R. G., Linderman, J. J., & Mooney, D. J. (1998). Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. Journal of Cell Science, 111(Pt 22), 3379–3387.

    PubMed  CAS  Google Scholar 

  154. Putnam, A. J., Cunningham, J. J., Pillemer, B. B., & Mooney, D. J. (2003). External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. American Journal of Physiology Cell Physiology, 284(3), C627–C639.

    PubMed  CAS  Google Scholar 

  155. Putnam, A. J., Schultz, K., & Mooney, D. J. (2001). Control of microtubule assembly by extracellular matrix and externally applied strain. American Journal of Physiology Cell Physiology, 280(3), C556–C564.

    PubMed  CAS  Google Scholar 

  156. Pytela, R., Pierschbacher, M. D., Argraves, S., Suzuki, S., & Ruoslahti, E. (1987). Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymology, 144, 475–489.

    CAS  Google Scholar 

  157. Raeber, G. P., Lutolf, M. P., & Hubbell, J. A. (2005). Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophysical Journal, 89(2), 1374–1388.

    PubMed  CAS  Google Scholar 

  158. Ratcliffe, A., & Niklason, L. E. (2002). Bioreactors and bioprocessing for tissue engineering. Annals of the New York Academy of Sciences, 961, 210–215.

    Article  PubMed  CAS  Google Scholar 

  159. Ren, X. D., Kiosses, W. B., & Schwartz, M. A. (1999). Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO Journal, 18(3), 578–585.

    PubMed  CAS  Google Scholar 

  160. Reusch, P., Wagdy, H., Reusch, R., Wilson, E., & Ives, H. E. (1996). Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circulation Research, 79(5), 1046–1053.

    PubMed  CAS  Google Scholar 

  161. Reyes, C. D., & Garcia, A. J. (2004). Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. Journal of Biomedical Materials Research A, 69(4), 591–600.

    Google Scholar 

  162. Rezania, A., & Healy, K. E. (1999). Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. Journal of Orthopedic Research, 17(4), 615–623.

    CAS  Google Scholar 

  163. Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.

    PubMed  CAS  Google Scholar 

  164. Ruoslahti, E., & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science, 238(4826), 491–497.

    PubMed  CAS  Google Scholar 

  165. Sastry, S. K., & Burridge, K. (2000). Focal adhesions: A nexus for intracellular signaling and cytoskeletal dynamics. Experimental Cell Research, 261(1), 25–36.

    PubMed  CAS  Google Scholar 

  166. Schoenwaelder, S. M., & Burridge, K. (1999). Bidirectional signaling between the cytoskeleton and integrins. Current Opinion in Cell Biology, 11(2), 274–286.

    PubMed  CAS  Google Scholar 

  167. Shemesh, T., Geiger, B., Bershadsky, A. D., & Kozlov, M. M. (2005). Focal adhesions as mechanosensors: A physical mechanism. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12383–12388.

    PubMed  CAS  Google Scholar 

  168. Shyy, J. Y., & Chien, S. (1997). Role of integrins in cellular responses to mechanical stress and adhesion. Current Opinion in Cell Biology, 9(5), 707–713.

    PubMed  CAS  Google Scholar 

  169. Shyy, J. Y., & Chien, S. (2002). Role of integrins in endothelial mechanosensing of shear stress. Circulation Research, 91(9), 769–775.

    PubMed  CAS  Google Scholar 

  170. Sieminski, A. L., Hebbel, R. P., & Gooch, K. J. (2004). The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in␣vitro. Experimental Cell Research, 297(2), 574–584.

    PubMed  CAS  Google Scholar 

  171. Sikavitsas, V. I., Temenoff, J. S., & Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19), 2581–2593.

    PubMed  CAS  Google Scholar 

  172. Sordella, R., Jiang, W., Chen, G. C., Curto, M., & Settleman, J. (2003). Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell, 113(2), 147–158.

    PubMed  CAS  Google Scholar 

  173. Staatz, W. D., Fok, K. F., Zutter, M. M., Adams, S. P., Rodriguez, B. A., & Santoro, S. A. (1991). Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. Journal of Biological Chemistry, 266(12), 7363–7367.

    PubMed  CAS  Google Scholar 

  174. Stamenovic, D., Fredberg, J. J., Wang, N., Butler, J. P., & Ingber, D. E. (1996). A microstructural approach to cytoskeletal mechanics based on tensegrity. Journal of Theoretical Biology, 181(2), 125–136.

    PubMed  CAS  Google Scholar 

  175. Stamenovic, D., & Ingber, D. E. (2002). Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1(1), 95–108.

    PubMed  CAS  Google Scholar 

  176. Stamenovic, D., Mijailovich, S. M., Tolic-Norrelykke, I. M., Chen, J., & Wang, N. (2002). Cell prestress. II. Contribution of microtubules. American Journal of Physiology Cell Physiology, 282(3), C617–C624.

    PubMed  CAS  Google Scholar 

  177. Stegemann, J. P., Hong, H., & Nerem, R. M. (2005). Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. Journal of Applied Physiology, 98(6), 2321–2327.

    PubMed  Google Scholar 

  178. Stegemann, J. P., & Nerem, R. M. (2003). Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Annals of Biomedical Engineering, 31(4), 391–402.

    PubMed  Google Scholar 

  179. Thyberg, J. (1998). Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histology and Histopathology, 13(3), 871–891.

    PubMed  CAS  Google Scholar 

  180. Thyberg, J., Blomgren, K., Hedin, U., & Dryjski, M. (1995). Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study. Cell Tissue Research, 281(3), 421–433.

    PubMed  CAS  Google Scholar 

  181. Turner, C. H., & Pavalko, F. M. (1998). Mechanotransduction and functional response of the skeleton to physical stress: The mechanisms and mechanics of bone adaptation. Journal of Orthopedic Science, 3(6), 346–355.

    CAS  Google Scholar 

  182. Urech, L., Bittermann, A. G., Hubbell, J. A., & Hall, H. (2005). Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in␣vitro. Biomaterials, 26(12), 1369–1379.

    PubMed  CAS  Google Scholar 

  183. Vailhe, B., Lecomte, M., Wiernsperger, N., & Tranqui, L. (1998). The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis, 2(4), 331–344.

    PubMed  CAS  Google Scholar 

  184. Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: Implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.

    PubMed  CAS  Google Scholar 

  185. Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., & Chien, S. (2005). Visualizing the mechanical activation of Src. Nature, 434(7036), 1040–1045.

    PubMed  CAS  Google Scholar 

  186. Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260(5111), 1124–1127.

    PubMed  CAS  Google Scholar 

  187. Wang, H. B., Dembo, M., Hanks, S. K., & Wang, Y. (2001). Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11295–11300.

    PubMed  CAS  Google Scholar 

  188. Wang, N., Naruse, K., Stamenovic, D., Fredberg, J. J., Mijailovich, S. M., Tolic-Norrelykke, I. M., Polte, T., Mannix, R., & Ingber, D. E. (2001). Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7765–7770.

    PubMed  CAS  Google Scholar 

  189. Wang, N., & Stamenovic, D. (2002). Mechanics of vimentin intermediate filaments. Journal of Muscle Research and Cell Motility, 23(5–6), 535–540.

    PubMed  Google Scholar 

  190. Wang, N., & Suo, Z. (2005). Long-distance propagation of forces in a cell. Biochemical and Biophysical Research Communication, 328(4), 1133–1138.

    CAS  Google Scholar 

  191. Wang, N., Tolic-Norrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology Cell Physiology, 282(3), C606–C616.

    PubMed  CAS  Google Scholar 

  192. Wang, F., Weaver, V. M., Petersen, O. W., Larabell, C. A., Dedhar, S., Briand, P., Lupu, R., & Bissell, M. J. (1998). Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14821–14826.

    PubMed  CAS  Google Scholar 

  193. Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., & Bissell, M. J. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in␣vivo by integrin blocking antibodies. Journal of Cell Biology, 137(1), 231–245.

    PubMed  CAS  Google Scholar 

  194. Wehrle-Haller, B., & Imhof, B. (2002). The inner lives of focal adhesions. Trends in Cell Biology, 12(8), 382–389.

    PubMed  CAS  Google Scholar 

  195. Wilson, E., Sudhir, K. & Ives, H. E. (1995). Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. Journal of Clinical Investigation, 96(5), 2364–2372.

    Article  PubMed  CAS  Google Scholar 

  196. Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: Can Rho GTPases and microtubules point the way?. Journal of Cell Science, 114(Pt 21), 3795–3803.

    PubMed  CAS  Google Scholar 

  197. Wolff, J. (1992). Das Gasetz der Transformation der Knochen. Berlin: Verlag August Hirschwald.

    Google Scholar 

  198. Wong, J. Y., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir, 19(5), 1908–1913.

    CAS  Google Scholar 

  199. Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163(3), 583–595.

    PubMed  CAS  Google Scholar 

  200. Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta, 1692(2–3), 103–119.

    PubMed  CAS  Google Scholar 

  201. Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., & Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60(1), 24–34.

    PubMed  Google Scholar 

  202. Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J., & Wong, J. Y. (2004). Photopolymerization in microfluidic gradient generators: Microscale control of substrate compliance to manipulate cell response. Advanced Materials, 16(23–24), 2133.

    CAS  Google Scholar 

  203. Zaman, M. H., Kamm, R. D., Matsudaira, P., & Lauffenburger, D. A. (2005). Computational model for cell migration in three-dimensional matrices. Biophysical Journal, 89(2), 1389–1397.

    PubMed  CAS  Google Scholar 

  204. Zaman, M. H., Trapani, L. M., Siemeski, A., Mackellar, D., Gong, H., Kamm, R. D., Wells, A., Lauffenburger, D. A., & Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 10889–10894.

    PubMed  CAS  Google Scholar 

  205. Zhang, Q., Magnusson, M. K., & Mosher, D. F. (1997). Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Molecular Biology of the Cell, 8(8), 1415–1425.

    PubMed  CAS  Google Scholar 

  206. Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A. M., & Burridge, K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. Journal of Cell Biology, 141(2), 539–551.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Institutes of Health (NIDCR: DE-016117) and the American Heart Association (Western States Affiliate: 0465111Y) to A.J.P. and fellowships from the Achievement Rewards for College Scientists (ARCS) Foundation to S.R.P. and C.M.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Putnam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyton, S.R., Ghajar, C.M., Khatiwala, C.B. et al. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function. Cell Biochem Biophys 47, 300–320 (2007). https://doi.org/10.1007/s12013-007-0004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-0004-y

Keywords

Navigation