Skip to main content

Advertisement

Log in

Evaluation of Electrocardiogram Parameters and Heart Rate Variability During Blood Pressure Elevation by Phenylephrine in Cirrhotic Rats

  • Research
  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cirrhotic cardiomyopathy is a myocardial disease that may go undetected in the early stages due to peripheral vasodilatation. The aim of the study was to evaluate the electrocardiogram (ECG) and heart rate variability (HRV) after raising blood pressure by phenylephrine injection in rats with liver cirrhosis. Twenty male Sprague–Dawley rats were divided into the Sham and common bile duct ligation (CBDL) groups. After 44 days, animals were anesthetized and the right femoral artery and vein catheterized. After a steady-state period, a bolus injection of phenylephrine (PHE, 10 μg/μl/IV, baroreflex maneuver) was followed by a slow injection of PHE (100 μg/ml/5 min/IV, sustained maneuver). Rapid and slow injections of PHE resulted in a greater increase in mean arterial pressure (MAP) and a weaker bradycardia response in the CBDL group than in the Sham group. ECG analysis showed increased QT, QTc, JT, and T peak to T end in the CBDL group, which remained unchanged after PHE injection. On the other hand, the parasympathetic indices of the HF band and RMSSD, and the sympathetic index of the LF band after PHE injection were lower in the CBDL group than in the Sham group.

ECG data indicated prolonged ventricular depolarization and repolarization, independent of blood pressure levels in cirrhosis. On the other hand, after PHE injection, the parasympathetic and sympathetic components of HRV decreased, regardless of the duration of elevated blood pressure. We suggest that HRV analysis can provide a useful approach to assess cardiac dysfunction associated with elevated blood pressure in cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ALT:

Alanine Aminotransferase

AST:

Aspartate Aminotransferase

CI:

Cardiac Index

CBDL:

Common Bile Duct Ligation

Hb:

Hemoglobin

HR:

Heart Rate

HRV:

Heart Rate Variability

HF:

High Frequency

LF:

Low Frequency

MAP:

Mean Arterial Pressure

PLT:

Platelet

PHE:

Phenylephrine

QTc:

Corrected QT

RBC:

Red Blood Cell Count

RMSSD:

The Root Mean Square of Successive RR Interval Differences

SDRR:

The Standard Deviation of RR Interval

VR:

Vascular Resistance

WBC:

White Blood Cell Count

References

  1. Henriksen, J. H., Møller, S., Schifter, S., Abrahamsen, J., & Becker, U. (2001). High arterial compliance in cirrhosis is related to low adrenaline and elevated circulating calcitonin gene related peptide but not to activated vasoconstrictor systems. Gut, 49, 112–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, H., Gaskari, S. A., & Lee, S. S. (2006). Cardiac and vascular changes in cirrhosis: Pathogenic mechanisms. World Journal of gastroenterology: WJG, 12, 837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Møller, S., & Bendtsen, F. (2018). The pathophysiology of arterial vasodilatation and hyperdynamic circulation in cirrhosis. Liver International, 38, 570–580.

    Article  PubMed  Google Scholar 

  4. Iwakiri, Y., & Groszmann, R. J. (2006). The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology (Baltimore, Md.), 43(S1), S121–S131.

    Article  CAS  PubMed  Google Scholar 

  5. Møller, S., & Lee, S. S. (2018). Cirrhotic cardiomyopathy. Journal of hepatology, 69, 958–960.

    Article  PubMed  Google Scholar 

  6. Zardi, E. M., Zardi, D. M., Chin, D., Sonnino, C., Dobrina, A., & Abbate, A. (2016). Cirrhotic cardiomyopathy in the pre-and post-liver transplantation phase. Journal of cardiology, 67, 125–130.

    Article  PubMed  Google Scholar 

  7. Ripoll, C., Yotti, R., Bermejo, J., & Bañares, R. (2011). The heart in liver transplantation. Journal of Hepatology, 54, 810–822.

    Article  PubMed  Google Scholar 

  8. Torregrosa, M., Aguadé, S., Dos, L., Segura, R., Gónzalez, A., Evangelista, A., Castell, J., Margarit, C., Esteban, R., & Guardia, J. (2005). Cardiac alterations in cirrhosis: Reversibility after liver transplantation. Journal of hepatology, 42, 68–74.

    Article  PubMed  Google Scholar 

  9. Izzy, M., Fortune, B. E., Serper, M., Bhave, N., deLemos, A., Gallegos-Orozco, J. F., Guerrero-Miranda, C., Hall, S., Harinstein, M. E., Karas, M. G., Kriss, M., Lim, N., Palardy, M., Sawinski, D., Schonfeld, E., Seetharam, A., Sharma, P., Tallaj, J., Dadhania, D. M., & VanWagner, L. B. (2022). Management of cardiac diseases in liver transplant recipients: Comprehensive review and multidisciplinary practice-based recommendations. American journal of transplantation, 22, 2740–2758.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Bernardi, M., Calandra, S., Colantoni, A., Trevisani, F., Raimondo, M. L., Sica, G., Schepis, F., Mandini, M., Simoni, P., Contin, M., & Raimondo, G. (1998). Q-T interval prolongation in cirrhosis: prevalence, relationship with severity, and etiology of the disease and possible pathogenetic factors. Hepatology (Baltimore, Md.), 27, 28–34.

    Article  CAS  PubMed  Google Scholar 

  11. Henriksen, J. H., Fuglsang, S., Bendtsen, F., Christensen, E., & Møller, S. (2002). Dyssynchronous electrical and mechanical systole in patients with cirrhosis. Journal of hepatology, 36, 513–520.

    Article  PubMed  Google Scholar 

  12. Henriksen, J. H., Gotze, J. P., Fuglsang, S., Christensen, E., Bendtsen, F., & Moller, S. (2003). Increased circulating pro-brain natriuretic peptide (proBNP) and brain natriuretic peptide (BNP) in patients with cirrhosis: Relation to cardiovascular dysfunction and severity of disease. Gut, 52, 1511–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desai, M. S., Shabier, Z., Taylor, M., Lam, F., Thevananther, S., Kosters, A., & Karpen, S. J. (2010). Hypertrophic cardiomyopathy and dysregulation of cardiac energetics in a mouse model of biliary fibrosis. Hepatology (Baltimore, Md.), 51, 2097–2107.

    Article  CAS  PubMed  Google Scholar 

  14. Malhi, H., & Gores, G. J. (2008). Cellular and molecular mechanisms of liver injury. Gastroenterology, 134, 1641–1654.

    Article  CAS  PubMed  Google Scholar 

  15. Perez-Pena, J., Rincon, D., Banares, R., Olmedilla, L., Garutti, I., Grigorov, I., & Calleja, J. (2003). Autonomic neuropathy in end-stage cirrhotic patients and evolution after liver transplantation, in Transplantation proceedings. Amsterdam: Elsevier.

    Google Scholar 

  16. Khodadadi, F., Bahaoddini, A., Tavassoli, A., & Ketabchi, F. (2020). Heart rate variability and pulmonary dysfunction in rats subjected to hemorrhagic shock. BMC Cardiovascular Disorders, 20, 1–9.

    Article  Google Scholar 

  17. Ates, F., Topal, E., Kosar, F., Karincaoglu, M., Yildirim, B., Aksoy, Y., Aladag, M., Harputluoglu, M. M., Demirel, U., Alan, H., & Hilmioglu, F. (2006). The relationship of heart rate variability with severity and prognosis of cirrhosis. Digestive diseases and sciences, 51, 1614–1618.

    Article  PubMed  Google Scholar 

  18. Youn, M., Kang, S., Jun, I., Shin, W. J., Choi, B. M., Do, K. J., & Cho, S. J. (2006). Assesment of cardiovascular autonomic function in patients with liver cirrhosis using heart rate variability, blood pressure variability and baroreflex sensitivity. Korean Journal of Anesthesiol, 50, 655–662.

    Article  Google Scholar 

  19. Gerbes, A. L., Jüngst, D., Paumgartner, G., Sauerbruch, T., & Remien, J. (1986). Evidence for down-regulation of beta-2-adreno-ceptors in cirrhotic patients with severe ascites. The Lancet, 327, 1409–1411.

    Article  Google Scholar 

  20. Lee, S. S., Marty, J., Mantz, J., Samain, E., Braillon, A., & Lebrec, D. (1990). Desensitization of myocardial beta-adrenergic receptors in cirrhotic rats. Hepatology (Baltimore, Md.), 12, 481–485.

    Article  CAS  PubMed  Google Scholar 

  21. Møller, S., Mortensen, C., Bendtsen, F., Jensen, L. T., Gøtze, J. P., & Madsen, J. L. (2012). Cardiac sympathetic imaging with m IBG in cirrhosis and portal hypertension: relation to autonomic and cardiac function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 303, G1228–G1235.

    Article  PubMed  Google Scholar 

  22. Lee, R. F., Glenn, T. K., & Lee, S. S. (2007). Cardiac dysfunction in cirrhosis. Best Practice & Research Clinical Gastroenterology, 21, 125–140.

    Article  ADS  CAS  Google Scholar 

  23. Ramond, M. J., Comoy, E., & Lebrec, D. (1986). Alterations in isoprenaline sensitivity in patients with cirrhosis: Evidence of abnormality of the sympathetic nervous activity. British journal of clinical pharmacology, 21, 191–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirzaei-Damabi, N., Hatam, M., Yeganeh, F., Ketabchi, F., & Nasimi, A. (2020). Roles of glutamate and GABA of the Kölliker-Fuse nucleus in generating the cardiovascular chemoreflex. Pflugers Archiv : European journal of physiology, 472, 1051–1063.

    Article  CAS  PubMed  Google Scholar 

  25. Redfors, B., Ali, A., Shao, Y., Lundgren, J., Gan, L.-M., & Omerovic, E. (2014). Different catecholamines induce different patterns of takotsubo-like cardiac dysfunction in an apparently afterload dependent manner. International journal of cardiology, 174, 330–336.

    Article  PubMed  Google Scholar 

  26. Wodack, K. H., Graessler, M. F., Nishimoto, S. A., Behem, C. R., Pinnschmidt, H. O., Punke, M. A., Monge-García, M. I., Trepte, C. J. C., & Reuter, D. A. (2019). Assessment of central hemodynamic effects of phenylephrine: An animal experiment. Journal of clinical monitoring and computing, 33, 377–384.

    Article  PubMed  Google Scholar 

  27. Estrela, H. F., Damasio, E. S., Fonseca, E. K., Bergamaschi, C. T., & Campos, R. R. (2016). Differential sympathetic vasomotor activation induced by liver cirrhosis in rats. PLoS ONE, 11, e0152512.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sepehrinezhad, A., Dehghanian, A., Rafati, A., & Ketabchi, F. (2020). Impact of liver damage on blood-borne variables and pulmonary hemodynamic responses to hypoxia and hyperoxia in anesthetized rats. BMC Cardiovascular Disorders, 20, 1–14.

    Article  Google Scholar 

  30. Khoramzadeh, M., Dehghanian, A., & Ketabchi, F. (2019). Roles of Endothelin B receptors and endothelial nitric oxide synthase in the regulation of pulmonary hemodynamic in cirrhotic rats. Journal of Cardiovascular Pharmacology, 73, 178–185.

    Article  CAS  PubMed  Google Scholar 

  31. Goodman, Z. D. (2007). Grading and staging systems for inflammation and fibrosis in chronic liver diseases. Journal of Hepatology, 47, 598–607.

    Article  PubMed  Google Scholar 

  32. Ketabchi, F., Sepehrinezhad, A., & Dehghanian, A. (2018). The relationship between liver dysfunction, electrocardiographic abnormalities and metabolism in rat. J Clin Exp Cardiolog, 9, 2.

    Article  Google Scholar 

  33. Kmecova, J., & Klimas, J. (2010). Heart rate correction of the QT duration in rats. European journal of pharmacology, 641, 187–192.

    Article  CAS  PubMed  Google Scholar 

  34. Shaffer, F., & Ginsberg, J. P. (2017). An overview of heart rate variability metrics and norms. Frontiers in Public Health., 5, 258.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ho, H.-L., Lee, F.-Y., Hsu, S.-J., Wang, S.-S., Hsin, I.-F., Huang, H.-C., Lee, J.-Y., Lin, H.-C., & Lee, S.-D. (2015). The ability of 17 β-estradiol to attenuate intrahepatic vasoconstriction to endothelin-1 in female rats is lost in cirrhosis. Annals of Hepatology, 1, 404–413.

    Article  Google Scholar 

  36. Nunes, H., Lebrec, D., Mazmanian, M., Capron, F., Heller, J., Tazi, K. A., Zerbib, E., Dulmet, E., Moreau, R., & Dinh-Xuan, A. T. (2001). Role of nitric oxide in hepatopulmonary syndrome in cirrhotic rats. American Journal of Respiratory and Critical Care Medicine, 164, 879–885.

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi, H., Beppu, T., Shirabe, K., Maehara, Y., & Baba, H. (2014). Management of thrombocytopenia due to liver cirrhosis: A review. World Journal of Gastroenterology: WJG, 20, 2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolh, P., Ghuysen, A., Tchana-Sato, V., D’Orio, V., Gerard, P., Morimont, P., Limet, R., & Lambermont, B. (2003). Effects of increased afterload on left ventricular performance and mechanical efficiency are not baroreflex-mediated. European Journal of Cardio-Thoracic Surgery, 24, 912–919.

    Article  PubMed  Google Scholar 

  39. Chávez-González, E., Rodríguez-Jiménez, A. E., Ferrer-Rodríguez, C. J., & Donoiu, I. (2022). Ventricular arrhythmias are associated with increased QT interval and QRS dispersion in patients with ST-elevation myocardial infarction. Portuguese Journal of Cardiology : An Official Journal of the Portuguese Society of Cardiology, 41, 395–404.

    Google Scholar 

  40. Hwang, S. Y., Liu, H., & Lee, S. S. (2023). Dysregulated Calcium Handling in Cirrhotic Cardiomyopathy. Biomedicines, 11, 1895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Eroglu, A. (2014). The effect of intravenous anesthetics on ischemia-reperfusion injury. BioMed Research International. https://doi.org/10.1155/2014/821513

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zorniak, M., Mitrega, K., Bialka, S., Porc, M., & Krzeminski, T. F. (2010). Comparison of thiopental, urethane, and pentobarbital in the study of experimental cardiology in rats in vivo. Journal of Cardiovascular Pharmacology, 56, 38–44.

    Article  CAS  PubMed  Google Scholar 

  43. Hanamoto, H., Niwa, H., Sugimura, M., & Morimoto, Y. (2012). Autonomic and cardiovascular effects of pentobarbital anesthesia during trigeminal stimulation in cats. International journal of oral science, 4, 24–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Polli, F., & Gattinoni, L. (2010). Balancing volume resuscitation and ascites management in cirrhosis. Current opinion in anaesthesiology, 23, 151–158.

    Article  PubMed  Google Scholar 

  45. De Maria, B., Bari, V., Sgoifo, A., Carnevali, L., Cairo, B., Vaini, E., Catai, A. M., de Medeiros Takahashi, A. C., Dalla Vecchia, L. A., & Porta, A. (2019). Concomitant Evaluation of Heart Period and QT Interval Variability Spectral Markers to Typify Cardiac Control in Humans and Rats. Frontiers in physiology, 10, 1478.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by the Research Council of Shiraz University of Medical Sciences and the Research Center for Thoracic and Vascular Surgery, Shiraz, Iran, grant No 97–01-01–18349 for acquiring an MSc degree in physiology by M. Khoram.

Author information

Authors and Affiliations

Authors

Contributions

F.K. and A.D. designed the research outline. M.K. and A.D. performed experiments. F.K. and M.K. extracted data from Power Lab system and exported data to Excel. F.K. and M.K. prepared figures and tables, calculated and analyzed data. F.K. prepared the draft of manuscript. F.K. and A.D. finalized the paper.

Corresponding author

Correspondence to Farzaneh Ketabchi.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose.

Ethical approval

All experimental procedures were approved by the Center for Comparative and Experimental Medicine and the Ethical Committee of Animal Care at the university (Code: IR.SUMS.REC.1398.265).

Additional information

Handling Editor: Gerrit Frommeyer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabchi, F., Khoram, M. & Dehghanian, A. Evaluation of Electrocardiogram Parameters and Heart Rate Variability During Blood Pressure Elevation by Phenylephrine in Cirrhotic Rats. Cardiovasc Toxicol 24, 321–334 (2024). https://doi.org/10.1007/s12012-024-09839-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-024-09839-4

Keywords

Navigation