Skip to main content

Advertisement

Log in

Cardioprotective Effects of the 4-Week Aerobic Running Exercises Before Treatment with Doxorubicin in Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin is associated with cardiotoxicity, and physical exercise seeks to minimize the toxic effects of doxorubicin through physiological cardiac remodeling, as well as the reduction of oxidative stress, evidenced by previous studies. This study aimed to analyze whether running training before treatment with doxorubicin influences tolerance to physical exertion and cardiotoxicity. Thirty-nine male Wistar rats, aged 90 days and weighing between 250 and 300 g, were divided into 4 groups: Control (C), Doxorubicin (D), Trained (T), and Trained + Doxorubicin (TD). Animals in groups T and DT were submitted to treadmill running for 3 weeks, 5 times a week at 18 m/min for 20–30 min before treatment with doxorubicin. Animals in groups D and DT received intraperitoneal injections of doxorubicin hydrochloride three times a week for two weeks, reaching a total cumulative dose of 7.50 mg/kg. Our results show an increase in total collagen fibers in the D group (p = 0.01), but no increase in the TD group, in addition to the attenuation of the number of cardiac mast cells in the animals in the TD group (p = 0.05). The animals in the TD group showed maintenance of tolerance to exertion compared to group D. Therefore, running training attenuated the cardiac damage caused by the treatment with doxorubicin, in addition to maintaining the tolerance to exertion in the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Caillet, P., Liuu, E., Raynaud Simon, A., Bonnefoy, M., Guerin, O., Berrut, G., et al. (2017). Association between cachexia, chemotherapy and outcomes in older cancer patients: A systematic review. Clinical Nutrition, 36(6), 1473–1482. https://doi.org/10.1016/j.clnu.2016.12.003

    Article  PubMed  Google Scholar 

  3. Adão, R., de Keulenaer, G., Leite-Moreira, A., & Brás-Silva, C. (2013). Cardiotoxicity associated with cancer therapy: Pathophysiology and prevention. Revista Portuguesa de Cardiologia (English Edition), 32(5), 395–409. https://doi.org/10.1016/j.repc.2012.11.002

    Article  Google Scholar 

  4. Kizek, R., Adam, V., Hrabeta, J., Eckschlager, T., Smutny, S., Burda, J. V., Frei, E., & Stiborova, M. (2012). Anthracyclines and ellipticines as DNA-damaging anticancer drugs: Recent advances. Pharmacology & Therapeutics, 133(1), 26–39. https://doi.org/10.1016/j.pharmthera.2011.07.006

    Article  CAS  Google Scholar 

  5. Wonders, K. Y., Hydock, D. S., Schneider, C. M., & Hayward, R. (2008). Acute exercise protects against doxorubicin cardiotoxicity. Integrative Cancer Therapies, 7(3), 147–154. https://doi.org/10.1177/1534735408322848

    Article  CAS  PubMed  Google Scholar 

  6. Osataphan, N., Phrommintikul, A., Chattipakorn, S. C., & Chattipakorn, N. (2020). Effects of doxorubicin-induced cardiotoxicity on cardiac mitochondrial dynamics and mitochondrial function: Insights for future interventions. Journal of Cellular and Molecular Medicine, 24(12), 6534–6557. https://doi.org/10.1111/jcmm.15305

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harjola, V.-P., Mullens, W., Banaszewski, M., Bauersachs, J., Brunner-La Rocca, H.-P., Chioncel, O., Collins, S. P., Doehner, W., Filippatos, G. S., Flammer, A. J., Fuhrmann, V., Lainscak, M., Lassus, J., Legrand, M., Masip, J., Mueller, C., Papp, Z., Parissis, J., Platz, E., … Mebazaa, A. (2017). Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management: A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). European Journal of Heart Failure, 19(7), 821–36. https://doi.org/10.1002/ejhf.872

    Article  PubMed  Google Scholar 

  8. Levick, S. P., Meléndez, G. C., Plante, E., McLarty, J. L., Brower, G. L., & Janicki, J. S. (2011). Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovascular Research., 89(1), 12–9. https://doi.org/10.1093/cvr/cvq272

    Article  CAS  PubMed  Google Scholar 

  9. Kritikou, E., Kuiper, J., Kovanen, P. T., & Bot, I. (2016). The impact of mast cells on cardiovascular diseases. European Journal of Pharmacology, 778, 103–115. https://doi.org/10.1016/j.ejphar.2015.04.050

    Article  CAS  PubMed  Google Scholar 

  10. Swift, D. L., Johannsen, N. M., Lavie, C. J., Earnest, C. P., & Church, T. S. (2014). The role of exercise and physical activity in weight loss and maintenance. Progress in Cardiovascular Diseases, 56(4), 441–447. https://doi.org/10.1016/j.pcad.2013.09.012

    Article  PubMed  Google Scholar 

  11. Garber, C. E., Blissmer, B., Deschenes, M. R., Franklin, B. A., Lamonte, M. J., Lee, I. M., Nieman, D., & Swain, D. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory. Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise., 43(7), 1334–1359. https://doi.org/10.1249/mss.0b013e318213fefb

    Article  Google Scholar 

  12. Ashrafi, J., & Roshan, V. D. (2012). Is short-term exercise a therapeutic tool for improvement of cardioprotection against DOX-induced cardiotoxicity? An experimental controlled protocol in rats. Asian Pacific Journal of Cancer Prevention., 13(8), 4025–4030.

    Article  Google Scholar 

  13. Smuder, A. J., Kavazis, A. N., Min, K., & Powers, S. K. (2011). Exercise protects against doxorubicin-induced oxidative stress and proteolysis in skeletal muscle. Journal of Applied Physiology, 110(4), 935–942. https://doi.org/10.1152/japplphysiol.00677.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cardoso, D. F., Coriolano, H. J. A., & Duarte, J. A. (2018). Regular voluntary running has favorable histological effects on doxorubicin-induced kidney toxicity in Wistar rats. Cell Tissue Research, 374(1), 177–187. https://doi.org/10.1007/s00441-018-2840-z

    Article  CAS  PubMed  Google Scholar 

  15. Morton, A. B., Mor Huertas, A., Hinkley, J. M., Ichinoseki-Sekine, N., Christou, D. D., & Smuder, A. J. (2019). Mitochondrial accumulation of doxorubicin in cardiac and diaphragm muscle following exercise preconditioning. Mitochondrion, 45, 52–62. https://doi.org/10.1016/j.mito.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  16. McArdle, W. D., Katch, F. I., & Katch, V. L. (2010). Exercise physiology: Nutrition, energy, and human performance (p. 1104). Lippincott Williams & Wilkins.

    Google Scholar 

  17. Chicco, A. J., Hydock, D. S., Schneider, C. M., & Hayward, R. (2006). Low-intensity exercise training during doxorubicin treatment protects against cardiotoxicity. Journal of Applied Physiology, 100(2), 519–527. https://doi.org/10.1152/japplphysiol.00148.2005

    Article  CAS  PubMed  Google Scholar 

  18. Chicco, A. J., Schneider, C. M., & Hayward, R. (2005). Voluntary exercise protects against acute doxorubicin cardiotoxicity in the isolated perfused rat heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 289(2), R424-31. https://doi.org/10.1152/ajpregu.00636.2004

    Article  CAS  PubMed  Google Scholar 

  19. Hydock, D. S., Lien, C. Y., Jensen, B. T., Schneider, C. M., & Hayward, R. (2011). Exercise preconditioning provides long-term protection against early chronic doxorubicin cardiotoxicity. Integrative Cancer Therapy, 10(1), 47–57. https://doi.org/10.1177/1534735410392577

    Article  Google Scholar 

  20. Kouzi, S. A., & Uddin, M. N. (2016). Aerobic exercise training as a potential cardioprotective strategy to attenuate doxorubicin-induced cardiotoxicity. Journal of Pharmacy & Pharmaceutical Sciences, 19(3), 399–410.

    Article  CAS  Google Scholar 

  21. Lien, C. Y., Jensen, B. T., Hydock, D. S., & Hayward, R. (2015). Short-term exercise training attenuates acute doxorubicin cardiotoxicity. Journal of Physiology and Biochemistry, 71(4), 669–78. https://doi.org/10.1007/s13105-015-0432-x

    Article  CAS  PubMed  Google Scholar 

  22. Baschung Pfister, P., de Bruin, E. D., Tobler-Ammann, B. C., Maurer, B., & Knols, R. H. (2015). The relevance of applying exercise training principles when designing therapeutic interventions for patients with inflammatory myopathies: A systematic review. Rheumatology Internationa, 35(10), 1641–54. https://doi.org/10.1007/s00296-015-3343-9

    Article  CAS  Google Scholar 

  23. Volkova, M., & Russell, R. (2011). Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Current Cardiology Reviews, 7(4), 214–220. https://doi.org/10.2174/157340311799960645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dufresne, S., Guéritat, J., Chiavassa, S., Noblet, C., Assi, M., Rioux-Leclercq, N., Rannou-Bekono, F., Lefeuvre-Orfila, L., Paris, F., & Rébillard, A. (2020). Exercise training improves radiotherapy efficiency in a murine model of prostate cancer. The FASEB Journal, 34(4), 4984–96. https://doi.org/10.1096/fj.201901728r

    Article  CAS  PubMed  Google Scholar 

  25. Yamaguchi, S., Aoyama, T., Ito, A., Nagai, M., Iijima, H., Zhang, X., Tajino, J., & Kuroki, H. (2013). Effects of exercise level on biomarkers in a rat knee model of osteoarthritis. Journal of Orthopaedic Research, 31(7), 1026–1031. https://doi.org/10.1002/jor.22332

    Article  CAS  PubMed  Google Scholar 

  26. Skovgaard, C., Almquist, N. W., Kvorning, T., Christensen, P. M., & Bangsbo, J. (2018). Effect of tapering after a period of high-volume sprint interval training on running performance and muscular adaptations in moderately trained runners. Journal of Applied Physiology, 124(2), 259–67. https://doi.org/10.1152/japplphysiol.00472.2017

    Article  CAS  PubMed  Google Scholar 

  27. Manchado-Gobatto, F. D. B., Gobatto, C. A., Ribeiro, C., de AlencarMota, C. S., de Araujo, G. G., de Araújo, M. B., & de Mello, M. A. R. (2010). Limiar anaeróbio em corrida e natação para ratos: determinação utilizando dois métodos matemáticos. Revista da Educação Física/UEM, 21(2), 245–53. https://doi.org/10.4025/reveducfis.v21i2.7681

    Article  Google Scholar 

  28. Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89(6), 2829–2835. https://doi.org/10.1161/01.cir.89.6.2829

    Article  CAS  PubMed  Google Scholar 

  29. Fidale, T. M., Antunes, H. K. M., dos Santos, L. A., de Souza, F. R., Deconte, S. R., de Moura, F. B. R., Mantovani, M. M., Duarte, P. R. A., Roever, L., & Resende, E. S. (2018). Increased dietary leucine reduces doxorubicin-associated cardiac dysfunction in rats. Frontiers in Physiology, 8, 1042. https://doi.org/10.3389/fphys.2017.01042

    Article  PubMed  PubMed Central  Google Scholar 

  30. Souza, F. R., Campos, É. C., Lopes, L. T. P., Rodrigues, C. M., Gonçalves, D. L. N., Beletti, M. E., Mantovani, M. M., Duarte, P. R. A., Gonçalvez, A., & Resende, E. S. (2022). Physical training improves cardiac structure and function of rats after doxorubicin-induced cardiomyopathy. International Journal of Cardiovascular Sciences, 35(6), 718–26. https://doi.org/10.36660/ijcs.20210095

    Article  Google Scholar 

  31. Teichholz, L. E., Kreulen, T., Herman, M. V., & Gorlin, R. (1976). Problems in echocardiographic volume determinations: Echocardiographic-angiographic correlations in the presence or absence of asynergy. The American Journal of Cardiology., 37(1), 7–11. https://doi.org/10.1016/0002-9149(76)90491-4

    Article  CAS  PubMed  Google Scholar 

  32. Rosa, G. B., Cavalet, L. C., de Melo, A. B. S., Junior, M. D. F., Lopes, P. R., Cardoso, R. A., Ferreira, L. A., Tomé, F. D., Nagib, P. R. A., Celes, M. R. N., Pedrino, G. R., Castro, C. H., Mathias, P. C. F., & Gomes, R. M. (2020). High salt intake during puberty leads to cardiac remodelling and baroreflex impairment in lean and obese male Wistar rats. British Journal of Nutrition., 123(6), 642–651. https://doi.org/10.1017/s0007114519003283

    Article  CAS  PubMed  Google Scholar 

  33. Junior, F., & Divino, M. (2019). Alterações cardiovasculares induzidas por supernutrição durante a lactação em ratos Wistar na idade adulta. [s. l.]. Retrieved 10 June 2023, from http://repositorio.bc.ufg.br/tede/handle/tede/9539

  34. Rich, L., & Whittaker, P. (2017). Collagen and picrosirius red staining: A polarized light assessment of fibrillar hue and spatial distribution. Journal of Morphological Sciences, 22(2), 0–0.

  35. Sridharan, G., & Shankar, A. A. (2012). Toluidine blue: A review of its chemistry and clinical utility. Journal of Oral Maxillofacial Pathology, 16(2), 251–255. https://doi.org/10.4103/0973-029X.99081

    Article  PubMed  PubMed Central  Google Scholar 

  36. Spiegel, M. R., & Cosentino, P. (2006). Estatística (3rd ed., p. 643). Pearson.

    Google Scholar 

  37. Azevedo, P. S., Polegato, B. F., Minicucci, M. F., Paiva, S. A. R., & Zornoff, L. A. M. (2015). Cardiac remodeling: Concepts, clinical impact, pathophysiological mechanisms and pharmacologic treatment. Arquivos Brasileiros de Cardiologia, 106, 62–69. https://doi.org/10.5935/abc.20160005

    Article  CAS  PubMed  Google Scholar 

  38. López, B., Querejeta, R., González, A., Larman, M., & Díez, J. (2012). Collagen cross-linking but not collagen amount associates with elevated filling pressures in hypertensive patients with stage C heart failure. Hypertension, 60(3), 677–83. https://doi.org/10.1161/hypertensionaha.112.196113

    Article  PubMed  Google Scholar 

  39. Zannad, F., Rossignol, P., & Iraqi, W. (2010). Extracellular matrix fibrotic markers in heart failure. Heart Failure Reviews, 15(4), 319–329. https://doi.org/10.1007/s10741-009-9143-0

    Article  CAS  PubMed  Google Scholar 

  40. Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. Journal of Investigative Dermatology, 127(3), 526–37. https://doi.org/10.1038/sj.jid.5700613

    Article  CAS  PubMed  Google Scholar 

  41. Mill, J. G., & Vassallo, D. V. (2001). Hipertrofia cardíaca. Revista Brasileira de Hipertensao, 8, 63–75.

    Google Scholar 

  42. Kong, P., Shinde, A. V., Su, Y., Russo, I., Chen, B., Saxena, A., Conway, S. J., Graff, J. M., & Frangogiannis, N. G. (2018). Opposing actions of fibroblast and cardiomyocyte smad3 signaling in the infarcted myocardium. Circulation, 137(7), 707–724. https://doi.org/10.1161/CIRCULATIONAHA.117.029622

    Article  CAS  PubMed  Google Scholar 

  43. Wang, B., Xu, M., Li, W., Li, X., Zheng, Q., & Niu, X. (2017). Aerobic exercise protects against pressure overload-induced cardiac dysfunction and hypertrophy via β3-AR-nNOS-NO activation. PLoS One, 12(6), e0179648. https://doi.org/10.1371/journal.pone.0179648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liaskou, E., Wilson, D. V., & Oo, Y. H. (2012). Innate immune cells in liver inflammation. Mediators of Inflammation, 2012, e949157. https://doi.org/10.1155/2012/949157

    Article  CAS  Google Scholar 

  45. Zhang, J., Knapton, A., Lipshultz, S. E., Cochran, T. R., Hiraragi, H., & Herman, E. H. (2014). Sex-related differences in mast cell activity and doxorubicin toxicity: A study in spontaneously hypertensive rats. Toxicologic Pathology, 42(2), 361–375. https://doi.org/10.1177/0192623313482778

    Article  CAS  PubMed  Google Scholar 

  46. Aoki, M., Pawankar, R., Niimi, Y., & Kawana, S. (2003). Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. IAA., 130(3), 216–223. https://doi.org/10.1159/000069515

    Article  CAS  Google Scholar 

  47. Zizzi, A., Aspriello, S. D., Rubini, C., & Goteri, G. (2011). Peri-implant diseases and host inflammatory response involving mast cells: A review. International Journal of Immunopathology and Pharmacology, 24(3), 557–66. https://doi.org/10.1177/039463201102400302

    Article  CAS  PubMed  Google Scholar 

  48. Batlle, M., Pérez-Villa, F., Lázaro, A., Garcia-Pras, E., Ramirez, J., Ortiz, J., Orús, J., Roqué, M., Heras, M., & Roig, E. (2007). Correlation between mast cell density and myocardial fibrosis in congestive heart failure patients. Transplantation Proceedings, 39(7), 2347–9. https://doi.org/10.1016/j.transproceed.2007.06.047

    Article  CAS  PubMed  Google Scholar 

  49. Bayat, M., Chien, S., & Chehelcheraghi, F. (2021). Aerobic exercise-assisted cardiac regeneration by inhibiting tryptase release in mast cells after myocardial infarction. Biomed Research International, 2021, 5521564. https://doi.org/10.1155/2021/5521564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, H. L., Hsieh, P. L., Hung, C. H., Cheng, H. C., Chou, W. C., Chu, P. M., Chang, Y.-C., & Tsai, K.-L. (2020). Early moderate intensity aerobic exercise intervention prevents doxorubicin-caused cardiac dysfunction through inhibition of cardiac fibrosis and inflammation. Cancers (Basel)., 12(5), 1102. https://doi.org/10.3390/cancers12051102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. da CostaGhignatti, P. V., Russo, M. K. B., Becker, T., Guecheva, T. N., Teixeira, L. V., Lehnen, A. M., Schaun, M. I., & Leguisamo, N. M. (2022). Preventive aerobic training preserves sympathovagal function and improves DNA repair capacity of peripheral blood mononuclear cells in rats with cardiomyopathy. Scientific Reports, 12(1), 6422. https://doi.org/10.1038/s41598-022-09361-z

    Article  CAS  Google Scholar 

  52. Sequeira, C. M., Martins, M. A., Alves, R., Nascimento, A. L. R., Botti, G. C. R. M., Rocha, V. N., & Matsuura, C. (2021). Aerobic exercise training attenuates doxorubicin-induced ultrastructural changes in rat ventricular myocytes. Life Sciences., 264, 118698. https://doi.org/10.1016/j.lfs.2020.118698

    Article  CAS  PubMed  Google Scholar 

  53. Forte, L. D. M., Rodrigues, N. A., Cordeiro, A. V., de Fante, T., Simino, L. A. P., Torsoni, A. S., Torsoni, M. A., Gobatto, C. A., & Manchado-Gobatto, F. B. (2020). Periodized versus non-periodized swimming training with equal total training load: Physiological, molecular and performance adaptations in Wistar rats. PLoS One, 15(9), e0239876. https://doi.org/10.1371/journal.pone.0239876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gandhi, H., Patel, V. B., Mistry, N., Patni, N., Nandania, J., & Balaraman, R. (2013). Doxorubicin mediated cardiotoxicity in rats: Protective role of felodipine on cardiac indices. Environmental Toxicology and Pharmacology, 36(3), 787–795. https://doi.org/10.1016/j.etap.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  55. Huang, S.-C., Wu, J.-F., Saovieng, S., Chien, W.-H., Hsu, M.-F., Li, X.-F., Lee, S.-D., Huang, C.-Y., Huang, C.-Y., & Kuo, C.-H. (2017). Doxorubicin inhibits muscle inflammation after eccentric exercise. Journal of Cachexia, Sarcopenia and Muscle., 8(2), 277–84. https://doi.org/10.1002/jcsm.12148

    Article  PubMed  Google Scholar 

  56. Hazari, M. S., Haykal-Coates, N., Winsett, D. W., Costa, D. L., & Farraj, A. K. (2009). Continuous electrocardiogram reveals differences in the short-term cardiotoxic response of Wistar-Kyoto and spontaneously hypertensive rats to doxorubicin. Toxicological Sciences, 110(1), 224–34. https://doi.org/10.1093/toxsci/kfp092

    Article  CAS  PubMed  Google Scholar 

  57. Khalilzadeh, M., Abdollahi, A., Abdolahi, F., Abdolghaffari, A. H., Dehpour, A. R., & Jazaeri, F. (2018). Protective effects of magnesium sulfate against doxorubicin induced cardiotoxicity in rats. Life Sciences, 207, 436–441. https://doi.org/10.1016/j.lfs.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  58. Ahmadian, M., & Dabidi, R. V. (2018). Modulatory effect of aerobic exercise training on doxorubicin-induced cardiotoxicity in rats with different ages. Cardiovascular Toxicology, 18(1), 33–42. https://doi.org/10.1007/s12012-017-9411-5

    Article  CAS  PubMed  Google Scholar 

  59. Shirinbayan, V., & Roshan, V. D. (2012). Pretreatment effect of running exercise on HSP70 and DOX-induced cardiotoxicity. Asian Pacific Journal of Cancer Prevention, 13(11), 5849–5855. https://doi.org/10.7314/apjcp.2012.13.11.5849

    Article  PubMed  Google Scholar 

  60. de SáFeitosa, L. A., dos SantosCarvalho, J., Dantas, C. O., de Souza, D. S., de Vasconcelos, C. M. L., Miguel-dos-Santos, R., Lauton-Santos, S., Quíntans-Júnior, L. J., Santos, M. R. V., de Santana-Filho, V. J., & Barreto, A. S. (2021). Resistance training improves cardiac function and cardiovascular autonomic control in doxorubicin-induced cardiotoxicity. Cardiovascular Toxicology, 21(5), 365–374. https://doi.org/10.1007/s12012-020-09627-w

    Article  CAS  Google Scholar 

  61. Pfannenstiel, K., & Hayward, R. (2018). Effects of resistance exercise training on doxorubicin-induced cardiotoxicity. Journal of Cardiovascular Pharmacology, 71(6), 332. https://doi.org/10.1097/fjc.0000000000000574

    Article  CAS  PubMed  Google Scholar 

  62. An, K.-Y., Arthuso, F. Z., Kang, D.-W., Morielli, A. R., Ntoukas, S. M., Friedenreich, C. M., McKenzie, D. C., Gelmon, K., Mackey, J. R., & Courneya, K. S. (2021). Exercise and health-related fitness predictors of chemotherapy completion in breast cancer patients: Pooled analysis of two multicenter trials. Breast Cancer Research and Treatment, 188(2), 399–407. https://doi.org/10.1007/s10549-021-06205-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

To the Foundation for Research Support in the state of Minas Gerais (FAPEMIG), for the scholarship received PAPG-Health Sciences (MASTER) for 24 months-Identifier: 11415.

Author information

Authors and Affiliations

Authors

Contributions

TCRP, ATFS, LCG, TMF, and ESR: Planning of experiments, TCRP and ATFS: Experiments, TCRP, ATFS, ESC, PRL, FRS, and SRD: Data collection, TCRP, ATFS, TMF, SRD, PRL, and LDURJ: Data analysis, SRD, GCH, and AVM: Space supply, reagents, technicians, and laboratory support, TCRP: Manuscript Writing, TCRP, ATFS, LCG, SRD, GCH, AVM, ESC, PRL, FRS, LDURJ, LR, TMF, and ESR: Manuscript edition, ESR: Study supervision. All authors contributed to this article.

Corresponding author

Correspondence to Talita Cristina Rodrigues Pereira.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Handling Editor: Vera Marisa Costa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, T.C.R., Fidale, T.M., Guimarães, L.C. et al. Cardioprotective Effects of the 4-Week Aerobic Running Exercises Before Treatment with Doxorubicin in Rats. Cardiovasc Toxicol 23, 265–277 (2023). https://doi.org/10.1007/s12012-023-09798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-023-09798-2

Keywords

Navigation