Skip to main content

Advertisement

Log in

Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

This is a review study, and it is not an original. Data availability is corresponding author responsibility.

Abbreviations

AGA:

Androgenetic alopecia

CVD:

Cardiovascular disease

lncRNA:

Long non-coding RNA

CeRNA:

Competing RNA

miR:

MicroRNA

CRP:

C-reactive protein

MI:

Myocardial infraction

MI/R:

Myocardial ischemia reperfusion

EC:

Endothelial cell

POCS:

Polycystic ovary syndrome

CAD:

Coronary artery disease

RUNX:

Runt-related transcription factor 2

TGF:

Transforming growth factor beta 1

PCAT1:

Prostate cancer-associated transcript 1

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

MEG:

Maternally expressed gene 3

AZIN2:

Antizyme inhibitor 2

PTEN:

Phosphatase and tensin homolog

GAS5:

Growth arrest-specific 5

CELF2:

CUGBp elva-like family 2

PI3K:

Phosphatidyl inositol 3-kinase

NLRP3:

NLR family pyrin domain containing 3

VAMC:

Vascular smooth muscle cell

HDAC4:

Histone deacetylase 4

Sirt1:

Silent mating type information regulation 2 homolog 1

MEF2C:

Myocyte enhancer factor 2 C

XIST:

X-inactive-specific transcript

SOCS-1:

Suppressor of cytokine signaling 1

IGF-1:

Insulin-like growth factor 1

BMP:

Bone morphogenetic protein

HOTAIR:

HOX transcript anti-sense RNA

STAT:

Signal transducer and activator of transcription

NF-Kβ:

Nuclear factor kappa light chain enhancer of activated B-cell

NEAT1:

Nuclear-enriched abundant transcript 1

ERK:

Extracellular signal-regulated kinase

MAPK:

Mitogen-activated protein kinase

GSK3β:

Glycogen synthase kinase 3 beta

CDKN3:

Cyclin-dependent kinase inhibitor 3

JNK:

C-Jun N-terminal kinase

CDK:

Cyclin-dependent kinase

SNH:

Small nucleolar RNA host gene 3

TUG1:

Taurine upregulated gene 1

JAK:

Janus kinase

ROS:

Reactive oxygen species

FOXO:

Forkhead/winged-helix-box class O

PVT1:

Plasmacytoma variant translocation 1

mTOR:

Mammalian target of rapamycin

CAR10:

Chromatin-associated RNA intergenic 10

S1PR2:

Sphingosine-1-phosphate receptor 2

Sema3A:

Semaphorin 3A

Nrf2:

Nuclear factor erythroid-2-related 2

IER3:

Immediate early response gene 3

FBX:

F-box-only protein

RANKL:

Receptor activator of nuclear factor kappa-B ligand

eNOS:

Endothelial nitric oxide synthase

NO:

Nitric oxide

BIRC3:

Baculoviral IAP repeat protein-3

TNF-α:

Tumor necrosis factor alpha

SOX2:

Sex determining region Y box-2

HMGB1:

High mobility group box 1

MEK1,2:

Mitogen-activated protein kinase kinases ½

EZH2:

Enhancer of zeste homolog 2

TCF4:

Transcription factor 4

GPX4:

Glutathione peroxidase 4

PKC:

Protein kinase C

ZEB1:

Zinc finger E-box binding homeobox1

TLR4:

Toll-like receptor 4

Myd88:

Myeloid differentiation primary response protein 88

SLC7:

Solute carrier family 7

hCAT1:

Human cationic amino acid transporter

PPAR-γ:

Peroxisome proliferative-activated receptor

WISP2:

WNT1 inducible signaling pathway protein 2

HOXA:

Homeobox A

HANDS-AS1:

Heart and neural crest derivatives expressed transcript 2 anti-sense RNA 1

UCA1:

Urothelial carcinoma-associated 1

BAX:

BCL2-associated X protein

BCL2:

B-cell lymphoma 2

ALDH2:

Aldehyde dehydrogenase 2

CASC2:

Cancer susceptibility gene 2

BDNF1:

Brain-derived neurotrophic factor

MCP1:

Monocyte chemoattractant protein 1

SDF1:

Stromal cell-derived factor 1

C-X-C:

CXC motif chemokine

AngII:

Angiotensin II

SREBP-1:

Sterol regulatory element binding protein 1

OIP5-AS1:

Opa-interacting protein 5 anti-sense RNA 1

XIAP:

X-linked inhibitor of apoptosis protein

eIF2:

Eukaryotic initiation factor 2

SOS1:

Son of seven less homolog 1

DSCR8:

Down syndrome critical region 8

PART1:

Prostate androgen regulated transcript 1

UBE2N:

Ubiquitin conjugating enzyme E2N

HIF1α:

Hypoxia inducible factor 1 alpha

MIAT:

Myocardial infraction associated transcript

NFAT:

Nuclear factor of activated T cells

References

  1. Yang, M., Weng, T., Zhang, W., Zhang, M., He, X., Han, C., & Wang, X. (2021). The roles of non-coding RNA in the development and regeneration of hair follicles: current status and further perspectives. Frontiers in Cell and Developmental Biology, 9, 2891.

    Article  Google Scholar 

  2. Salman, K. E., Altunay, I. K., Kucukunal, N. A., & Cerman, A. A. (2017). Frequency, severity and related factors of androgenetic alopecia in dermatology outpatient clinic: Hospital-based cross-sectional study in Turkey. Anais Brasileiros de Dermatologia, 92, 35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alshahrani, A. A., Al-Tuwaijri, R., Abuoliat, Z. A., Alyabsi, M., AlJasser, M. I., & Alkhodair, R. (2020). Prevalence and clinical characteristics of alopecia areata at a tertiary care center in Saudi Arabia. Dermatology Research and Practice. https://doi.org/10.1155/2020/7194270

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arias-Santiago, S., Gutierrez-Salmeron, M. T., Buendia-Eisman, A., Giron-Prieto, M. S., & Naranjo-Sintes, R. (2010). A comparative study of dyslipidaemia in men and woman with androgenic alopecia. Acta Dermato-Venereologica, 90, 485.

    Article  CAS  PubMed  Google Scholar 

  5. Ahouansou, S., Le Toumelin, P., Crickx, B., & Descamps, V. (2007). Association of androgenetic alopecia and hypertension. European Journal of Dermatology, 17(3), 220–222.

    PubMed  Google Scholar 

  6. Banger, H. S., Malhotra, S. K., Singh, S., & Mahajan, M. (2015). Is early onset androgenic alopecia a marker of metabolic syndrome and carotid artery atherosclerosis in young Indian male patients? International Journal of Trichology, 7(4), 141.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sharma, L., Dubey, A., Gupta, P., & Agrawal, A. (2013). Androgenetic alopecia and risk of coronary artery disease. Indian Dermatology Online Journal, 4(4), 283.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kessler, E. L., Rivaud, M. R., Vos, M. A., & van Veen, T. A. (2019). Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biology of Sex Differences, 10(1), 1–11.

    Article  CAS  Google Scholar 

  9. Danesh-Shakiba, M., Poorolajal, J., & Alirezaei, P. (2020). Androgenetic alopecia: Relationship to anthropometric indices, blood pressure and life-style habits. Clinical, Cosmetic and Investigational Dermatology, 13, 137.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zhu, N., Lin, E., Zhang, H., Liu, Y., Cao, G., Fu, C., Chen, L., Zeng, Y., Cai, B., & Yuan, Y. (2020). LncRNA H19 overexpression activates wnt signaling to maintain the hair follicle regeneration potential of dermal papilla cells. Frontiers in Genetics. https://doi.org/10.3389/fgene.2020.00694

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang, B. F., Jiang, H., Chen, J., Hu, Q., Yang, S., Liu, X. P., & Liu, G. (2020). LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. Journal of Cellular and Molecular Medicine, 24(1), 1099–1115.

    Article  CAS  PubMed  Google Scholar 

  12. Lin, B.-J., Lin, G.-Y., Zhu, J.-Y., Yin, G.-Q., Huang, D., & Yan, Y.-Y. (2020). LncRNA-PCAT1 maintains characteristics of dermal papilla cells and promotes hair follicle regeneration by regulating miR-329/Wnt10b axis. Experimental Cell Research, 394(1), 112031.

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Q., Feng, C., Liu, Y., Li, Q., Qiu, F., Wang, M., Shen, Z. D., & Fu, G. (2019). Long non-coding RNA PCAT-1 promotes cardiac fibroblast proliferation via upregulating TGF-beta1. European Review for Medical and Pharmacological Sciences, 23(23), 10517–10522.

    CAS  PubMed  Google Scholar 

  14. Li, C., Chang, L., Chen, Z., Liu, Z., Wang, Y., & Ye, Q. (2017). The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. International Journal of Molecular Medicine, 39(2), 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, D., Zhang, C., Li, J., Che, J., Yang, X., Xian, Y., Li, X., & Cao, C. (2019). Long non-coding RNA MALAT1 promotes cardiac remodeling in hypertensive rats by inhibiting the transcription of MyoD. Aging (Albany NY), 11(20), 8792.

    Article  CAS  Google Scholar 

  16. Li, X., Zhao, J., Geng, J., Chen, F., Wei, Z., Liu, C., Zhang, X., Li, Q., Zhang, J., & Gao, L. (2019). Long non-coding RNA MEG3 knockdown attenuates endoplasmic reticulum stress-mediated apoptosis by targeting p53 following myocardial infarction. Journal of Cellular and Molecular Medicine, 23(12), 8369–8380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, W.-L., Chen, L.-J., Wei, S.-Y., Shih, Y.-T., Huang, Y.-H., Lee, P.-L., Lee, C. I., Wang, M. C., Lee, D. Y., & Chien, S. (2021). Mechanoresponsive smad5 enhances MiR-487a processing to promote vascular endothelial proliferation in response to disturbed flow. Frontiers in Cell and Developmental Biology, 9, 647714.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, X., He, X., Wang, H., Li, M., Huang, S., Chen, G., Jing, Y., Wang, S., Chen, Y., & Liao, W. (2018). Loss of AZIN2 splice variant facilitates endogenous cardiac regeneration. Cardiovascular Research, 114(12), 1642–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, X., Sun, Y., Huang, S., Chen, Y., Chen, X., Li, M., Si, X., He, X., Zheng, H., & Zhong, L. (2019). Inhibition of AZIN2-sv induces neovascularization and improves prognosis after myocardial infarction by blocking ubiquitin-dependent talin1 degradation and activating the Akt pathway. eBioMedicine, 39, 69–82.

    Article  PubMed  Google Scholar 

  20. Wang, D., Xu, X., Pan, J., Zhao, S., Li, Y., Wang, Z., Yang, J., Zhang, X., Wang, Y., & Liu, M. (2021). GAS5 knockdown alleviates spinal cord injury by reducing VAV1 expression via RNA binding protein CELF2. Scientific Reports, 11(1), 1–11.

    CAS  Google Scholar 

  21. Zhou, X.-H., Chai, H.-X., Bai, M., & Zhang, Z. (2020). LncRNA-GAS5 regulates PDCD4 expression and mediates myocardial infarction-induced cardiomyocytes apoptosis via targeting MiR-21. Cell Cycle, 19(11), 1363–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Soliman, A. R., Ahmed, R. M., Yousry, A., Abdelaziz, T. S., & Selem, A. H. (2020). Plasma N-terminal pro-brain natriuretic peptide level as a marker of adverse outcome in patients with co-existing diabetes, chronic kidney disease and heart failure. Journal of Renal Injury Prevention, 10(3), e20–e20.

    Article  CAS  Google Scholar 

  23. Yin, G., Peng, Y., Lin, Y., Wang, P., Li, Z., Wang, R., & Lin, H. (2021). Long non-coding RNA MSTRG. 24008. 1 regulates the regeneration of the sciatic nerve via the miR-331–3p–NLRP3/MAL axis. Frontiers in Cell and Developmental Biology, 9, 1452.

    Article  Google Scholar 

  24. Yousefi, F., Soltani, B. M., & Rabbani, S. (2021). MicroRNA-331 inhibits isoproterenol-induced expression of profibrotic genes in cardiac myofibroblasts via the TGFβ/smad3 signaling pathway. Scientific Reports, 11(1), 1–12.

    Article  CAS  Google Scholar 

  25. Wang, Y., Zhao, Z.-J., Kang, X.-R., Bian, T., Shen, Z.-M., Jiang, Y., Sun, B., Hu, H. B., & Chen, Y.-S. (2020). lncRNA DLEU2 acts as a miR-181a sponge to regulate SEPP1 and inhibit skeletal muscle differentiation and regeneration. Aging (Albany NY), 12(23), 24033.

    Article  CAS  Google Scholar 

  26. Hori, D., Dunkerly-Eyring, B., Nomura, Y., Biswas, D., Steppan, J., Henao-Mejia, J., Adachi, H., Santhanam, L., Berkowitz, D. E., & Steenbergen, C. (2017). miR-181b regulates vascular stiffness age dependently in part by regulating TGF-β signaling. PLoS ONE, 12(3), e0174108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Li, R., Li, B., Cao, Y., Li, W., Dai, W., Zhang, L., Zhang, X., Ning, C., Li, H., & Yao, Y. (2021). Long non-coding RNA Mir22hg-derived miR-22-3p promotes skeletal muscle differentiation and regeneration by inhibiting HDAC4. Molecular Therapy-Nucleic Acids, 24, 200–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, R., Xu, Y., Zhang, W., Fang, Y., Yang, T., Zeng, D., Wei, T., Liu, J., Zhou, H., & Li, Y. (2021). Inhibiting miR-22 alleviates cardiac dysfunction by regulating Sirt1 in septic cardiomyopathy. Frontiers in Cell and Developmental Biology, 9, 675.

    CAS  Google Scholar 

  29. Lin, B.-J., Zhu, J.-Y., Ye, J., Lu, S.-D., Liao, M.-D., Meng, X.-C., & Yin, G.-Q. (2020). LncRNA-XIST promotes dermal papilla induced hair follicle regeneration by targeting miR-424 to activate hedgehog signaling. Cellular Signalling, 72, 109623.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, B., Xu, J., Wang, F., Wang, J., Zhao, H., & Feng, D. (2020). LncRNA XIST promotes myocardial infarction by regulating FOS through targeting miR-101a-3p. Aging (Albany NY), 12(8), 7232.

    Article  CAS  Google Scholar 

  31. Wang, L., Zhao, Y., Bao, X., Zhu, X., Kwok, Y.K.-Y., Sun, K., Chen, X., Huang, Y., Jauch, R., & Esteban, M. A. (2015). LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Research, 25(3), 335–350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kakoki, M., Ramanathan, P. V., Hagaman, J. R., Grant, R., Wilder, J. C., Taylor, J. M., Charles Jennette, J., Smithies, O., & Maeda-Smithies, N. (2021). Cyanocobalamin prevents cardiomyopathy in type 1 diabetes by modulating oxidative stress and DNMT-SOCS1/3-IGF-1 signaling. Communications Biology, 4(1), 1–12.

    Article  CAS  Google Scholar 

  33. Peracheh, M., Teymouri, B., Noori, N., Arbabzadeh, T., & Ghasemi, M. (2021). Evaluating the agreement of ultrasound imaging and beta-human chorionic gonadotropin (β-hCG) measurement in confirming completed medical abortion: Cross-sectional study. Qatar Medical Journal, 2021(2), 22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang, D., Chen, Y., Liu, M., Cao, Q., Wang, Q., Zhou, S., Wang, Y., Mao, S., Gu, X., & Luo, Z. (2020). The long noncoding RNA Arrl1 inhibits neurite outgrowth by functioning as a competing endogenous RNA during neuronal regeneration in rats. Journal of Biological Chemistry, 295(25), 8374–8386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, W., He, X., Chen, Z., Fan, D., Wang, Y., Feng, H., Zhang, G., Lu, A., & Xiao, L. (2019). LncRNA HOTAIR-mediated Wnt/β-catenin network modeling to predict and validate therapeutic targets for cartilage damage. BMC Bioinformatics, 20(1), 1–13.

    Article  Google Scholar 

  36. Dai, W., Chao, X., Li, S., Zhou, S., Zhong, G., & Jiang, Z. (2020). Long noncoding RNA HOTAIR functions as a competitive endogenous RNA to regulate Connexin43 remodeling in atrial fibrillation by sponging microRNA-613. Cardiovascular Therapeutics, 2020, 1.

    Article  CAS  Google Scholar 

  37. Yang, Y., Wang, Z., Yao, M., Xiong, W., Wang, J., Fang, Y., Yang, W., Jiang, H., Song, N., & Liu, L. (2021). Oxytocin protects against isoproterenol-induced cardiac hypertrophy by inhibiting PI3K/AKT pathway via a lncRNA GAS5/miR-375–3p/KLF4-dependent mechanism. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2021.766024

    Article  PubMed  PubMed Central  Google Scholar 

  38. Niu, Y.-N., Wang, K., Jin, S., Fan, D.-D., Wang, M.-S., Xing, N.-Z., & Xia, S.-J. (2016). The intriguing role of fibroblasts and c-Jun in the chemopreventive and therapeutic effect of finasteride on xenograft models of prostate cancer. Asian Journal of Andrology, 18(6), 913.

    CAS  PubMed  Google Scholar 

  39. An, N., Peng, J., He, G., Fan, X., Li, F., & Chen, H. (2018). Involvement of activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathway in proliferation of urethral plate fibroblasts in finasteride-induced rat hypospadias. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8984.

    Article  CAS  Google Scholar 

  40. Ge, Z., Yin, C., Li, Y., Tian, D., Xiang, Y., Li, Q., Tang, Y., & Zhang, Y. (2022). Long noncoding RNA NEAT1 promotes cardiac fibrosis in heart failure through increased recruitment of EZH2 to the Smad7 promoter region. Journal of Translational Medicine, 20(1), 1–16.

    Article  CAS  Google Scholar 

  41. Zhang, S., Wu, K., Liu, Y., Lin, Y., Zhang, X., Zhou, J., Zhang, H., Pan, T., & Fu, Y. (2016). Finasteride enhances the generation of human myeloid-derived suppressor cells by up-regulating the COX2/PGE2 pathway. PLoS ONE, 11(6), e0156549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hao, H., Hu, S., Wan, Q., Xu, C., Chen, H., Zhu, L., Xu, Z., Meng, J., Breyer, R. M., & Li, N. (2018). A protective role of microsomal prostaglandin E synthase-1 derived PGE2 and the endothelial EP4 receptor in vascular responses to injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(5), 1115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao, R., Wang, X., Jiang, C., Shi, F., Zhu, Y., Yang, B., Zhuo, J., Jing, Y., Luo, G., & Xia, S. (2018). Finasteride accelerates prostate wound healing after thulium laser resection through DHT and AR signalling. Cell Proliferation, 51(3), e12415.

    Article  PubMed  CAS  Google Scholar 

  44. Miao, K., Zhou, L., Ba, H., Li, C., Gu, H., Yin, B., Wang, J., Yang, X. P., Li, Z., & Wang, D. W. (2020). Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2. PLoS Biology, 18(12), e3000967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shao, S., Zhang, X., Duan, L., Fang, H., Rao, S., Liu, W., Guo, B., & Zhang, X. (2018). Lysyl hydroxylase inhibition by minoxidil blocks collagen deposition and prevents pulmonary fibrosis via TGF-β1/Smad3 signaling pathway. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 24, 8592.

    Article  CAS  Google Scholar 

  46. Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., Xiong, Y., Chen, G., Qian, H., & Jin, C. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367.

    Article  CAS  PubMed  Google Scholar 

  47. Choi, N., Shin, S., Song, S. U., & Sung, J.-H. (2018). Minoxidil promotes hair growth through stimulation of growth factor release from adipose-derived stem cells. International Journal of Molecular Sciences, 19(3), 691.

    Article  PubMed Central  CAS  Google Scholar 

  48. Chen, Y.-L., Tsai, Y.-T., Lee, C.-Y., Lee, C.-H., Chen, C.-Y., Liu, C.-M., Chen, J. J., Loh, S. H., & Tsai, C.-S. (2014). Urotensin II inhibits doxorubicin-induced human umbilical vein endothelial cell death by modulating ATF expression and via the ERK and Akt pathway. PLoS ONE, 9(9), e106812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kwon, O. S., Pyo, H. K., Oh, Y. J., Han, J. H., Lee, S. R., Chung, J. H., Eun, H. C., & Kim, K. H. (2007). Promotive effect of minoxidil combined with all-trans retinoic acid (tretinoin) on human hair growth in vitro. Journal of Korean medical science, 22(2), 283–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Garat, C. V., Majka, S. M., Sullivan, T. M., Crossno, J. T., Jr., Reusch, J. E., & Klemm, D. J. (2020). CREB depletion in smooth muscle cells promotes medial thickening, adventitial fibrosis and elicits pulmonary hypertension. Pulmonary Circulation, 10(2), 2045894019898374.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tong, S., Ji, Q., Du, Y., Zhu, X., Zhu, C., & Zhou, Y. (2019). Sfrp5/Wnt pathway: A protective regulatory system in atherosclerotic cardiovascular disease. Journal of Interferon & Cytokine Research, 39(8), 472–482.

    Article  CAS  Google Scholar 

  52. Wei, Y., Wang, T., Zhang, N., Ma, Y., Shi, S., Zhang, R., Zheng, X., & Zhao, L. (2021). LncRNA TRHDE-AS1 inhibit the scar fibroblasts proliferation via miR-181a-5p/PTEN axis. Journal of Molecular Histology, 52(2), 419–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, F.-J., Zhang, C.-L., Luo, X.-J., Peng, J., & Yang, T.-L. (2019). Involvement of the MiR-181b-5p/HMGB1 pathway in Ang II-induced phenotypic transformation of smooth muscle cells in hypertension. Aging and Disease, 10(2), 231.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sun, Y., Zhou, Q., Li, J., Zhao, C., Yu, Z., & Zhu, Q. (2019). LncRNA RP11-422N16. 3 inhibits cell proliferation and EMT, and induces apoptosis in hepatocellular carcinoma cells by sponging miR-23b-3p. OncoTargets and Therapy, 12, 10943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iaconetti, C., De Rosa, S., Polimeni, A., Sorrentino, S., Gareri, C., Carino, A., Sabatino, J., Colangelo, M., Curcio, A., & Indolfi, C. (2015). Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovascular Research, 107(4), 522–533.

    Article  CAS  PubMed  Google Scholar 

  56. Cao, F., Wang, Z., Feng, Y., Zhu, H., Yang, M., Zhang, S., & Wang, X. (2020). lncRNA TPTEP1 competitively sponges miR-328-5p to inhibit the proliferation of non-small cell lung cancer cells. Oncology Reports, 43(5), 1606–1618.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang, C., Wang, L., & Shen, Y. (2021). Circ_0004104 knockdown alleviates oxidized low-density lipoprotein-induced dysfunction in vascular endothelial cells through targeting miR-328-3p/TRIM14 axis in atherosclerosis. BMC Cardiovascular Disorders, 21(1), 1–12.

    Article  CAS  Google Scholar 

  58. Zhou, X., Chen, H., Zhu, L., Hao, B., Zhang, W., Hua, J., Gu, H., Jin, W., & Zhang, G. (2016). Helicobacter pylori infection related long noncoding RNA (lncRNA) AF147447 inhibits gastric cancer proliferation and invasion by targeting MUC2 and up-regulating miR-34c. Oncotarget, 7(50), 82770.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bernardo, B. C., Gao, X.-M., Winbanks, C. E., Boey, E. J., Tham, Y. K., Kiriazis, H., Gregorevic, P., Obad, S., Kauppinen, S., & Du, X.-J. (2012). Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proceedings of the National Academy of Sciences, 109(43), 17615–17620.

    Article  CAS  Google Scholar 

  60. Deng, Y., Wei, Z., Huang, M., Xu, G., Wei, W., Peng, B., Nong, S., & Qin, H. (2020). Long non-coding RNA F11-AS1 inhibits HBV-related hepatocellular carcinoma progression by regulating NR1I3 via binding to microRNA-211-5p. Journal of Cellular and Molecular Medicine, 24(2), 1848–1865.

    Article  CAS  PubMed  Google Scholar 

  61. Xu, F., Zhong, J. Y., Lin, X., Shan, S. K., Guo, B., Zheng, M. H., Wang, Y., Li, F., Cui, R. R., & Wu, F. (2020). Melatonin alleviates vascular calcification and ageing through exosomal miR-204/miR-211 cluster in a paracrine manner. Journal of pineal research, 68(3), e12631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, Z., Wang, Z., & Duan, Y. (2020). LncRNA MEG3 inhibits non-small cell lung cancer via interaction with DKC1 protein. Oncology Letters, 20(3), 2183–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zou, L., Ma, X., Lin, S., Wu, B., Chen, Y., & Peng, C. (2019). Long noncoding RNA-MEG3 contributes to myocardial ischemia–reperfusion injury through suppression of miR-7–5p expression. Bioscience Reports. https://doi.org/10.1042/BSR20190210

  64. Liu, L., Wang, H.-J., Meng, T., Lei, C., Yang, X.-H., Wang, Q.-S., Jin, B., & Zhu, J.-F. (2019). lncRNA GAS5 inhibits cell migration and invasion and promotes autophagy by targeting miR-222-3p via the GAS5/PTEN-signaling pathway in CRC. Molecular Therapy-Nucleic Acids, 17, 644–656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. He, X., Wang, S., Li, M., Zhong, L., Zheng, H., Sun, Y., Lai, Y., Chen, X., Wei, G., & Si, X. (2019). Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Theranostics, 9(19), 5558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ji, T., Zhang, Y., Wang, Z., Hou, Z., Gao, X., & Zhang, X. (2020). FOXD3-AS1 suppresses the progression of non-small cell lung cancer by regulating miR-150/SRCIN1axis. Cancer Biomarkers, 29(3), 417–427.

    Article  CAS  PubMed  Google Scholar 

  67. Tong, G., Wang, Y., Xu, C., Xu, Y., Ye, X., Zhou, L., Zhu, G., Zhou, Z., & Huang, J. (2019). Long non-coding RNA FOXD3-AS1 aggravates ischemia/reperfusion injury of cardiomyocytes through promoting autophagy. American Journal of Translational Research, 11(9), 5634.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xu, D., Dai, R., Chi, H., Ge, W., & Rong, J. (2021). Long non-coding RNA MEG8 suppresses hypoxia-induced excessive proliferation, migration and inflammation of vascular smooth muscle cells by regulation of the miR-195–5p/RECK axis. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2021.697273

    Article  PubMed  PubMed Central  Google Scholar 

  69. Fan, C., Cui, X., Chen, S., Huang, S., & Jiang, H. (2020). LncRNA LOC100912373 modulates PDK1 expression by sponging miR-17-5p to promote the proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. American Journal of Translational Research, 12(12), 7709.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zadeh, F. J., Ghasemi, Y., Bagheri, S., Maleknia, M., Davari, N., & Rezaeeyan, H. (2020). Do exosomes play role in cardiovascular disease development in hematological malignancy? Molecular Biology Reports, 47(7), 5487–5493.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, J., Li, Y., Liu, Y., Xu, G., Hei, Y., Lu, X., & Liu, W. (2021). Long non-coding RNA NEAT1 regulates glioma cell proliferation and apoptosis by competitively binding to microRNA-324-5p and upregulating KCTD20 expression. Oncology Reports, 46(1), 1–17.

    Article  Google Scholar 

  72. Zhang, M., Wang, X., Yao, J., & Qiu, Z. (2019). Long non-coding RNA NEAT1 inhibits oxidative stress-induced vascular endothelial cell injury by activating the miR-181d-5p/CDKN3 axis. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 3129–3137.

    Article  CAS  PubMed  Google Scholar 

  73. Zadeh, F. J., Mohammadtaghizadeh, M., Bahadori, H., Saki, N., & Rezaeeyan, H. (2020). The role of exogenous fibrinogen in cardiac surgery: Stop bleeding or induce cardiovascular disease. Molecular Biology Reports, 47(10), 8189–8198.

    Article  CAS  PubMed  Google Scholar 

  74. Cai, B., Zheng, Y., Ma, S., Xing, Q., Wang, X., Yang, B., Yin, G., & Guan, F. (2018). Long non-coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Molecular Medicine Reports, 17(4), 5477–5483.

    CAS  PubMed  Google Scholar 

  75. Cai, B., Wang, X., Liu, H., Ma, S., Zhang, K., Zhang, Y., Li, Q., Wang, J., Yao, M., & Guan, F. (2019). Up-regulated lncRNA5322 elevates MAPK1 to enhance proliferation of hair follicle stem cells as a ceRNA of microRNA-19b-3p. Cell Cycle, 18(14), 1588–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Xu, J., Tang, Y., Bei, Y., Ding, S., Che, L., Yao, J., Wang, H., Lv, D., & Xiao, J. (2016). miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 7(10), 10870.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zadeh, F. J., Akbari, T., Samimi, A., Davari, N., & Rezaeeyan, H. (2020). The role of molecular mechanism of ten-eleven translocation2 (TET2) family proteins in pathogenesis of cardiovascular diseases (CVDs). Molecular Biology Reports, 47(7), 5503–5509.

    Article  CAS  PubMed  Google Scholar 

  78. Haybar, H., Rezaeeyan, H., Shahjahani, M., Shirzad, R., & Saki, N. (2019). T-bet transcription factor in cardiovascular disease: attenuation or inflammation factor? Journal of Cellular Physiology, 234(6), 7915–7922.

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, H., Li, X., Wang, W., & Dong, H. (2020). Long non-coding RNA SNHG3 promotes breast cancer cell proliferation and metastasis by binding to microRNA-154-3p and activating the notch signaling pathway. BMC Cancer, 20(1), 1–13.

    Article  CAS  Google Scholar 

  80. Dong, P., Liu, W., & Wang, Z. (2018). MiR-154 promotes myocardial fibrosis through beta-catenin signaling pathway. European Review for Medical and Pharmacological Sciences, 22(7), 2052–2060.

    CAS  PubMed  Google Scholar 

  81. He, R., Zhang, W., Chen, S., Liu, Y., Yang, W., & Li, J. (2020). Transcriptional profiling reveals the regulatory role of DNER in promoting pancreatic neuroendocrine neoplasms. Frontiers in Genetics, 11, 1502.

    Article  CAS  Google Scholar 

  82. Quillard, T., Coupel, S., Coulon, F., Fitau, J., Chatelais, M., Cuturi, M., Chiffoleau, E., & Charreau, B. (2008). Impaired Notch4 activity elicits endothelial cell activation and apoptosis: Implication for transplant arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(12), 2258–2265.

    Article  CAS  PubMed  Google Scholar 

  83. Li, J., Zhang, Q., Fan, X., Mo, W., Dai, W., Feng, J., Wu, L., Liu, T., Li, S., & Xu, S. (2017). The long noncoding RNA TUG1 acts as a competing endogenous RNA to regulate the Hedgehog pathway by targeting miR-132 in hepatocellular carcinoma. Oncotarget, 8(39), 65932.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Xing, Z., Li, S., Liu, Z., Zhang, C., Meng, M., & Bai, Z. (2020). The long non-coding RNA LINC00473 contributes to cell proliferation via JAK-STAT3 signaling pathway by regulating miR-195-5p/SEPT2 axis in prostate cancer. Bioscience Reports. https://doi.org/10.1042/BSR20191850

  85. Fu, C., Li, D., Zhang, X., Liu, N., Chi, G., & Jin, X. (2018). LncRNA PVT1 facilitates tumorigenesis and progression of glioma via regulation of MiR-128-3p/GREM1 axis and BMP signaling pathway. Neurotherapeutics, 15(4), 1139–1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Su, Q., Liu, Y., Lv, X.-W., Dai, R.-X., Yang, X.-H., & Kong, B.-H. (2020). LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. American Journal of Physiology-Heart and Circulatory Physiology, 318(2), H332–H344.

    Article  CAS  PubMed  Google Scholar 

  87. Sun, B., Meng, M., Wei, J., & Wang, S. (2020). Long noncoding RNA PVT1 contributes to vascular endothelial cell proliferation via inhibition of miR-190a-5p in diagnostic biomarker evaluation of chronic heart failure. Experimental and Therapeutic Medicine, 19(5), 3348–3354.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Du, H., Zhang, H., Yang, R., Qiao, L., Shao, H., & Zhang, X. (2021). Small interfering RNA-induced silencing lncRNA PVT1 inhibits atherosclerosis via inactivating the MAPK/NF-κB pathway. Aging (Albany NY), 13(21), 24449.

    Article  CAS  Google Scholar 

  89. Li, Q., Wang, X.-J., & Jin, J.-H. (2019). SOX2-induced upregulation of lncRNA LINC01510 promotes papillary thyroid carcinoma progression by modulating miR-335/SHH and activating Hedgehog pathway. Biochemical and Biophysical Research Communications, 520(2), 277–283.

    Article  CAS  PubMed  Google Scholar 

  90. Wang, A., Dai, L., Yang, L., Wang, Y., Hao, X., Liu, Z., & Chen, P. (2021). Upregulation of miR-335 reduces myocardial injury following myocardial infarction via targeting MAP3K2. European Review for Medical and Pharmacological Sciences, 25(1), 344–352.

    PubMed  Google Scholar 

  91. Si, Y., Bai, J., Wu, J., Li, Q., Mo, Y., Fang, R., & Lai, W. (2018). LncRNA PlncRNA-1 regulates proliferation and differentiation of hair follicle stem cells through TGF-β1-mediated Wnt/β-catenin signal pathway. Molecular Medicine Reports, 17(1), 1191–1197.

    CAS  PubMed  Google Scholar 

  92. Chen, Z., Zhang, Z., Zhao, D., Feng, W., Meng, F., Han, S., Lin, B., & Shi, X. (2019). Long noncoding RNA (lncRNA) FOXD2-AS1 promotes cell proliferation and metastasis in hepatocellular carcinoma by regulating MiR-185/AKT axis. Medical Science Monitor, 25, 9618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ge, X., Li, G.-Y., Jiang, L., Jia, L., Zhang, Z., Li, X., Wang, R., Zhou, M., Zhou, Y., & Zeng, Z. (2019). Long noncoding RNA CAR10 promotes lung adenocarcinoma metastasis via miR-203/30/SNAI axis. Oncogene, 38(16), 3061–3076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, M., Xie, Z., Wang, P., Li, J., Liu, W., Tang, S. A., Liu, Z., Wu, X., Wu, Y., & Shen, H. (2018). The long noncoding RNA GAS5 negatively regulates the adipogenic differentiation of MSCs by modulating the miR-18a/CTGF axis as a ceRNA. Cell Death & Disease, 9(5), 1–13.

    Article  Google Scholar 

  95. Han, Y., Wu, N., Xia, F., Liu, S., & Jia, D. (2020). Long non-coding RNA GAS5 regulates myocardial ischemia-reperfusion injury through the PI3K/AKT apoptosis pathway by sponging miR-532-5p. International Journal of Molecular Medicine, 45(3), 858–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, Z., Liu, L., Zhong, Y., Cai, M., Gao, J., Tan, C., Han, X., Guo, R., & Han, L. (2019). LncRNA H19 over-expression inhibited Th17 cell differentiation to relieve endometriosis through miR-342-3p/IER3 pathway. Cell & Bioscience, 9(1), 1–10.

    Article  Google Scholar 

  97. Liu, F., Yang, X.-C., Chen, M.-L., Zhuang, Z.-W., Jiang, Y., Wang, J., & Zhou, Y.-J. (2020). LncRNA H19/Runx2 axis promotes VSMCs transition via MAPK pathway. American Journal of Translational Research, 12(4), 1338.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang, S.-F., Zhao, G., Peng, X.-F., & Ye, W.-C. (2021). The pathogenic role of long non-coding RNA H19 in atherosclerosis via the miR-146a-5p/ANGPTL4 pathway. Frontiers in Cardiovascular Medicine. https://doi.org/10.3389/fcvm.2021.770163

    Article  PubMed  PubMed Central  Google Scholar 

  99. He, S., Yang, S., Zhang, Y., Li, X., Gao, D., Zhong, Y., Cao, L., Ma, H., Liu, Y., & Li, G. (2019). LncRNA ODIR1 inhibits osteogenic differentiation of hUC-MSCs through the FBXO25/H2BK120ub/H3K4me3/OSX axis. Cell Death & Disease, 10(12), 1–16.

    Article  CAS  Google Scholar 

  100. Wang, C.-G., Hu, Y.-H., Su, S.-L., & Zhong, D. (2020). LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Experimental & Molecular Medicine, 52(8), 1310–1325.

    Article  CAS  Google Scholar 

  101. Xiang, J., Fu, H. Q., Xu, Z., Fan, W. J., Liu, F., & Chen, B. (2020). lncRNA SNHG1 attenuates osteogenic differentiation via the miR-101/DKK1 axis in bone marrow mesenchymal stem cells. Molecular Medicine Reports, 22(5), 3715–3722.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, D., Tian, Y., Yin, C., Huai, Y., Zhao, Y., Su, P., Wang, X., Pei, J., Zhang, K., & Yang, C. (2019). Silencing of lncRNA AK045490 promotes osteoblast differentiation and bone formation via β-Catenin/TCF1/Runx2 signaling axis. International Journal of Molecular Sciences, 20(24), 6229.

    Article  CAS  PubMed Central  Google Scholar 

  103. Li, D., Liu, Y., Gao, W., Han, J., Yuan, R., Zhang, M., & Ge, Z. (2020). LncRNA HCG11 inhibits adipocyte differentiation in human adipose-derived mesenchymal stem cells by sponging miR-204-5p to upregulate SIRT1. Cell Transplantation, 29, 0963689720968090.

    Article  PubMed Central  Google Scholar 

  104. Guo, R., Zou, B., Liang, Y., Bian, J., Xu, J., Zhou, Q., Zhang, C., Chen, T., Yang, M., & Wang, H. (2021). LncRNA RCAT1 promotes tumor progression and metastasis via miR-214-5p/E2F2 axis in renal cell carcinoma. Cell Death & Disease, 12(7), 1–14.

    Article  Google Scholar 

  105. Jin, F., Li, M., Li, X., Zheng, Y., Zhang, K., Liu, X., Cai, B., & Yin, G. (2022). PlncRNA-1 stimulates hair follicle stem cell differentiation in wound healing via the EZH2/ZEB1/MAPK1 axis. The Journal of Gene Medicine, 2022, e3408.

    Google Scholar 

  106. Yu, L., Qu, H., Yu, Y., Li, W., Zhao, Y., & Qiu, G. (2018). Lnc RNA-PCAT 1 targeting miR-145-5p promotes TLR 4-associated osteogenic differentiation of adipose-derived stem cells. Journal of Cellular and Molecular Medicine, 22(12), 6134–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yu, Y., Chen, Y., Zhang, X., Lu, X., Hong, J., Guo, X., & Zhou, D. (2018). Knockdown of lncRNA KCNQ1OT1 suppresses the adipogenic and osteogenic differentiation of tendon stem cell via downregulating miR-138 target genes PPARγ and RUNX2. Cell Cycle, 17(19–20), 2374–2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, M., Li, F., Sun, J.-W., Li, D.-H., Li, W.-T., Jiang, R.-R., Li, Z. J., Liu, X. J., Han, R. L., & Li, G.-X. (2019). LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Frontiers in Genetics, 10, 42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Cao, X., Zhang, Z., Wang, Y., Shan, W., Wang, R., Mao, S., Ding, S., Pang, C., Li, B., & Zhou, J. (2021). MiR-27a-3p/Hoxa10 axis regulates angiotensin ii-induced cardiomyocyte hypertrophy by targeting Kv4. 3 expression. Frontiers in Pharmacology, 12, 970.

    Article  Google Scholar 

  110. Zhan, H., Huang, F., Niu, Q., Jiao, M., Han, X., Zhang, K., Ma, W., Mi, S., Guo, S., & Zhao, Z. (2021). Downregulation of miR-128 ameliorates Ang II-induced cardiac remodeling via SIRT1/PIK3R1 multiple targets. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2021/8889195

    Article  PubMed  PubMed Central  Google Scholar 

  111. Wang, Y., Zhu, P., Luo, J., Wang, J., Liu, Z., Wu, W., Du, Y., Ye, B., Wang, D., & He, L. (2019). LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. The EMBO Journal, 38(17), e101110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wang, Y., Wang, K., Hu, Z., Zhou, H., Zhang, L., Wang, H., Li, G., Zhang, S., Cao, X., & Shi, F. (2018). MicroRNA-139-3p regulates osteoblast differentiation and apoptosis by targeting ELK1 and interacting with long noncoding RNA ODSM. Cell Death & Disease, 9(11), 1–16.

    Article  Google Scholar 

  113. Shi, Z.-L., Zhang, H., Fan, Z.-Y., Ma, W., Song, Y.-Z., Li, M., Li, T. Q., Cao, S. X., & Feng, G.-J. (2020). Long noncoding RNA LINC00314 facilitates osteogenic differentiation of adipose-derived stem cells through the hsa-miR-129-5p/GRM5 axis via the Wnt signaling pathway. Stem Cell Research & Therapy, 11(1), 1–14.

    Article  CAS  Google Scholar 

  114. Zhang, H., Zhang, X., & Zhang, J. (2018). MiR-129-5p inhibits autophagy and apoptosis of H9c2 cells induced by hydrogen peroxide via the PI3K/AKT/mTOR signaling pathway by targeting ATG14. Biochemical and Biophysical Research Communications, 506(1), 272–277.

    Article  CAS  PubMed  Google Scholar 

  115. Jiang, W., Liu, Y., Liu, R., Zhang, K., & Zhang, Y. (2015). The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. Cell Reports, 11(1), 137–148.

    Article  CAS  PubMed  Google Scholar 

  116. Gao, Z., Wang, Q., Ji, M., Guo, X., Li, L., & Su, X. (2021). Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. Journal of Translational Medicine, 19(1), 1–11.

    Article  Google Scholar 

  117. Zhou, G., Li, C., Feng, J., Zhang, J., & Fang, Y. (2018). lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Medicine, 8(2), 130–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, W., Wang, L., Miao, Y., & Xing, R. (2018). Novel long noncoding RNA GACAT3 promotes colorectal cancer cell proliferation, invasion, and migration through miR-149. OncoTargets and Therapy, 11, 1543.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Zhu, Z., Li, J., Tong, R., Zhang, X., & Yu, B. (2021). miR-149 alleviates Ox-LDL-induced endothelial cell injury by promoting autophagy through Akt/mTOR pathway. Cardiology Research and Practice, 2021, 1.

    Article  CAS  Google Scholar 

  120. Chen, C., Wang, X., Liu, T., Tang, X., Liu, Y., Liu, T., & Zhu, J. (2020). Overexpression of long non-coding RNA RP11-363E7. 4 inhibits proliferation and invasion in gastric cancer. Cell Biochemistry and Function, 38(7), 921–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang, G., Tang, L., Zhang, X., & Li, Y. (2019). LncRNA DILC participates in rheumatoid arthritis by inducing apoptosis of fibroblast-like synoviocytes and down-regulating IL-6. Bioscience Reports. https://doi.org/10.1042/BSR20182374

  122. Liu, Y., Feng, L., Ren, S., Zhang, Y., & Xue, J. (2020). Inhibition of lncRNA DILC attenuates neuropathic pain via the SOCS3/JAK2/STAT3 pathway. Bioscience Reports. https://doi.org/10.1042/BSR20194486

  123. Liu, C., Guo, X., Bai, S., Zeng, G., & Wang, H. (2020). lncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast-like synoviocytes by downregulating IL-17. Molecular Medicine Reports, 21(5), 2131–2137.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Cao, X., & Fan, Q.-L. (2020). LncRNA MIR503HG promotes high-glucose-induced proximal tubular cell apoptosis by targeting miR-503-5p/bcl-2 pathway. Diabetes, Metabolic Syndrome and Obesity, 13, 4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tang, C., Cai, Y., Jiang, H., Lv, Z., Yang, C., Xu, H., Li, Z., & Li, Y. (2020). LncRNA MAGI2-AS3 inhibits bladder cancer progression by targeting the miR-31-5p/TNS1 axis. Aging (Albany NY), 12(24), 25547.

    Article  CAS  Google Scholar 

  126. Li, X., Zhou, S., Fan, T., & Feng, X. (2020). lncRNA DGCR 5/miR-27a-3p/BNIP3 promotes cell apoptosis in pancreatic cancer by regulating the p38 MAPK pathway. International Journal of Molecular Medicine, 46(2), 729–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang, R., Feng, Y., Lu, J., Ge, Y., & Li, H. (2021). lncRNA Ttc3-209 promotes the apoptosis of retinal ganglion cells in retinal ischemia reperfusion injury by targeting the miR-484/Wnt8a axis. Investigative Ophthalmology & Visual Science, 62(3), 13–13.

    Article  CAS  Google Scholar 

  128. Ren, K., Sun, J., Liu, L., Yang, Y., Li, H., Wang, Z., Deng, J., Hou, M., Qiu, J., & Zhao, W. (2021). TP53-activated lncRNA GHRLOS regulates cell proliferation, invasion, and apoptosis of non-small cell lung cancer by modulating the miR-346/APC axis. Frontiers in Oncology, 11, 1282.

    Article  Google Scholar 

  129. Zhang, G., Li, S., Lu, J., Ge, Y., Wang, Q., Ma, G., Zhao, Q., Wu, D., Gong, W., & Du, M. (2018). LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Molecular Cancer, 17(1), 1–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Liu, Y., Cai, X., Cai, Y., & Chang, Y. (2021). lncRNA OIP5-AS1 suppresses cell proliferation and invasion of endometrial cancer by regulating PTEN/AKT via sponging miR-200c-3p. Journal of Immunology Research, 2021, 1.

    Google Scholar 

  131. Wang, M., Liu, Y., Li, C., Zhang, Y., Zhou, X., & Lu, C. (2019). Long noncoding RNA OIP5-AS1 accelerates the ox-LDL mediated vascular endothelial cells apoptosis through targeting GSK-3β via recruiting EZH2. American journal of Translational Research, 11(3), 1827.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang, Y., Wang, H., Ruan, J., Zheng, W., Yang, Z., & Pan, W. (2020). Long non-coding RNA OIP5-AS1 suppresses multiple myeloma progression by sponging miR-27a-3p to activate TSC1 expression. Cancer cell international, 20(1), 1–13.

    CAS  Google Scholar 

  133. Chu, Q., Xu, T., Zheng, W., Chang, R., & Zhang, L. (2020). Long noncoding RNA MARL regulates antiviral responses through suppression miR-122-dependent MAVS downregulation in lower vertebrates. PLoS Pathogens, 16(7), e1008670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dong, L., Cao, X., Luo, Y., Zhang, G., & Zhang, D. (2020). A positive feedback loop of lncRNA DSCR8/miR-98-5p/STAT3/HIF-1α plays a role in the progression of ovarian cancer. Frontiers in Oncology. https://doi.org/10.3389/fonc.2020.01713

    Article  PubMed  PubMed Central  Google Scholar 

  135. Hu, C., Huang, S., Wu, F., & Ding, H. (2018). miR-98 inhibits cell proliferation and induces cell apoptosis by targeting MAPK6 in HUVECs. Experimental and Therapeutic Medicine, 15(3), 2755–2760.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Sun, C., Liu, H., Guo, J., Yu, Y., Yang, D., He, F., & Du, Z. (2017). MicroRNA-98 negatively regulates myocardial infarction-induced apoptosis by down-regulating Fas and caspase-3. Scientific Reports, 7(1), 1–11.

    CAS  Google Scholar 

  137. Wang, Z., & Xu, R. (2020). lncRNA PART1 promotes breast cancer cell progression by directly targeting miR-4516. Cancer Management and Research, 12, 7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhang, Y., Lu, P., Du, H., & Zhang, L. (2019). LINK-A lncRNA promotes proliferation and inhibits apoptosis of mantle cell lymphoma cell by upregulating survivin. Medical Science Monitor, 25, 365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, J., Shen, C., Li, R., Wang, C., Xiao, Y., Kuang, Y., Lao, M., Xu, S., Shi, M., & Cai, X. (2021). Increased long noncoding RNA LINK-A contributes to rheumatoid synovial inflammation and aggression. JCI Insight, 6(23), e146757.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Li, E.-Y., Zhao, P.-J., Jian, J., Yin, B.-Q., Sun, Z.-Y., Xu, C.-X., Tang, Y. C., & Wu, H. (2019). LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle, 18(2), 156–166.

    Article  CAS  PubMed  Google Scholar 

  141. Cao, X., Ma, Q., Wang, B., Qian, Q., Liu, N., Liu, T., & Dong, X. (2021). Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY), 13(8), 11188.

    Article  CAS  Google Scholar 

  142. Li, X., Song, F., & Sun, H. (2020). Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncology Letters, 20(5), 1–1.

    CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank all our colleagues in IRAN University of Medical Science.

Author information

Authors and Affiliations

Authors

Contributions

MA and MP has conceived the manuscript and revised it. SFY and MR wrote the manuscript. MB and RA design the Table and Figure.

Corresponding authors

Correspondence to Mahboubeh Pazoki or Mehran Amrovani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Vittorio Fineschi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohaninasab, M., yavari, S.f., Babazadeh, M. et al. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 22, 603–619 (2022). https://doi.org/10.1007/s12012-022-09742-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-022-09742-w

Keywords

Navigation