Skip to main content

Advertisement

Log in

Improved Endothelium-Dependent Relaxation of Thoracic Aorta in Niclosamide-Treated Diabetic Rats

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Diabetes‐induced endothelial dysfunction is critical for the development of diabetic cardiovascular complications. The aim of this study was to investigate the effect of niclosamide (Nic) on vascular endothelial dysfunction in streptozotocin (STZ)-induced diabetic rats. Male Sprague–Dawley rats were injected with a single intraperitoneal injection of STZ (75 mg/kg) to induce type 1 diabetes, and Nic (10 mg/kg) was intraperitoneally administered per day for 4 weeks. Endothelial function was evaluated as carbachol (CCh, an endothelium-dependent vasodilator)-evoked relaxation in the experiments performed on isolated thoracic aortas. The changes in the protein expressions of phosphorylated eNOS at serine 1177 (p-eNOSSer1177) and phosphorylated VASP at serine 239 (p-VASPSer239) of the rat aortas were analyzed by western blotting to determine whether NO/cGMP signaling is involved in the mechanism of Nic. STZ-injected rats had higher fasting blood glucose and less body weight compared to control rats (p < 0.05). Nic treatment did not affect blood glucose levels or body weights of the rats. CCh-induced endothelium-dependent relaxation of the aortic rings was significantly decreased in diabetic rats compared to control (Emax = 66.79 ± 7.41% and 90.28 ± 5.55%, respectively; p < 0.05). CCh-induced relaxation response was greater in Nic-treated diabetic rats compared to diabetic rats (Emax = 91.56 ± 1.20% and 66.79 ± 7.41%, respectively; p < 0.05). Phosphorylation of eNOS and VASP in aortic tissues was significantly reduced in diabetic rats, which were markedly increased by Nic treatment (p < 0.05). We demonstrated that Nic improved endothelial dysfunction possibly through the activation of NO/cGMP signaling without affecting hyperglycemia in diabetic rats. Our results suggesting that Nic has potential of repurposing for diabetic cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Skyler, J. S., Bakris, G. L., Bonifacio, E., Darsow, T., Eckel, R. H., Groop, L., et al. (2017). Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes, 66(2), 241–255.

    Article  CAS  PubMed  Google Scholar 

  2. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., et al. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes research and clinical practice, 157, 107843.

    Article  PubMed  Google Scholar 

  3. Chowdhury, T. A., Shaho, S., & Moolla, A. (2014). Complications of diabetes: Progress, but significant challenges ahead. Annals of Translational Medicine, 2(12), 120.

    PubMed  PubMed Central  Google Scholar 

  4. Leon, B. M., & Maddox, T. M. (2015). Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World Journal of Diabetes, 6(13), 1246–1258.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jia, X., Xiao, C., Sheng, D., et al. (2020). TRPV4 Mediates cardiac fibrosis via the TGF-β1/Smad3 signaling pathway in diabetic rats. Cardiovascular Toxicology, 20, 492–499.

    Article  PubMed  Google Scholar 

  6. Zeydanli, E. N., Kandilci, H. B., & Turan, B. (2011). Doxycycline ameliorates vascular endothelial and contractile dysfunction in the thoracic aorta of diabetic rats. Cardiovascular Toxicology, 11, 134–147.

    Article  CAS  PubMed  Google Scholar 

  7. Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1832(32), 2216–2232.

    Article  CAS  Google Scholar 

  8. Pooja, G. D., Bhargava, K., & Sethy, N. K. (2018). Post-translational modifications of eNOS augment nitric oxide availability and facilitates hypoxia adaptation in Ladakhi women. Nitric Oxide, 78, 103–112.

    Article  CAS  PubMed  Google Scholar 

  9. Park, M., Sandner, P., & Krieg, T. (2018). cGMP at the centre of attention: Emerging strategies for activating the cardioprotective PKG pathway. Basic Research in Cardiology, 113(4), 1–7.

    Article  CAS  Google Scholar 

  10. Du, X., Chen, C., Zhang, M., Cai, D., Sun, J., Yang, J., et al. (2015). Scutellarin reduces endothelium dysfunction through the PKG-I pathway. Journal of Evidence-Based Integrative Medicine, 2015, 430271–430312.

    Google Scholar 

  11. Oelze, M., Mollnau, H., Hoffmann, N., Warnholtz, A., Bodenschatz, M., Smolenski, A., et al. (2000). Vasodilator-stimulated phosphoprotein serine 239 phosphorylation as a sensitive monitor of defective nitric oxide/cGMP signaling and endothelial dysfunction. Circulation Research, 87(11), 999–1005.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumoto, T., Noguchi, E., Kobayashi, T., & Kamata, K. (2007). Mechanisms underlying the chronic pioglitazone treatment-induced improvement in the impaired endothelium-dependent relaxation seen in aortas from diabetic rats. Free Radical Biology and Medicine, 42(7), 993–1007.

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Z., Wu, Y., Zhang, S., Zhao, Y., Yin, X., Wang, W., et al. (2019). The role of NO-cGMP pathway inhibition in vascular endothelial-dependent smooth muscle relaxation disorder of AT1-AA positive rats: Protective effects of adiponectin. Nitric Oxide, 87, 10–22.

    Article  CAS  PubMed  Google Scholar 

  14. Chen, W., Mook, R. A., Jr., Premont, R. T., & Wang, J. (2018). Niclosamide: Beyond an antihelminthic drug. Cellular Signalling, 41, 89–96.

    Article  CAS  PubMed  Google Scholar 

  15. Li, Y., Li, P. K., Roberts, M. J., Arend, R. C., Samant, R. S., & Buchsbaum, D. J. (2014). Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Letters, 349(1), 8–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, P., Shao, M., Guo, L., Wang, W., Song, G., Yu, X., et al. (2018). Niclosamide ethanolamine improves diabetes and diabetic kidney disease in mice. American Journal of Translational Research, 10(4), 1071–1084.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, S. L., Yan, J., Zhang, Y. Q., Zhen, C. L., Liu, M. Y., Jin, J., et al. (2017). Niclosamide ethanolamine inhibits artery constriction. Pharmacological Research, 115, 78–86.

    Article  CAS  PubMed  Google Scholar 

  18. Sezen, S. F., Lagoda, G., Musicki, B., & Burnett, A. L. (2014). Hydroxyl fasudil, an inhibitor of Rho signaling, improves erectile function in diabetic rats: A role for neuronal ROCK. The Journal of Sexual Medicine, 11(9), 2164–2171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elbe, H., Vardı, N., Orman, D., Taşlıdere, E., & Yıldız, A. (2014). Ameliorative effects of aminoguanidine on rat aorta in streptozotocin-induced diabetes and evaluation of α-SMA expression. Anatolian Journal of Cardiology, 14(8), 679–684.

    Article  PubMed  Google Scholar 

  20. Kajal, A., & Singh, R. (2019). Coriandrum sativum seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition. PLoS ONE, 14(3), e0213147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ghareib, S. A., El-Bassossy, H. M., Elberry, A. A., Azhar, A., Watson, M. L., Banjar, Z. M., et al. (2016). Protective effect of zingerone on increased vascular contractility in diabetic rat aorta. European Journal of Pharmacology, 780, 174–179.

    Article  CAS  PubMed  Google Scholar 

  22. Kadioglu, M., Kaya Yasar, Y., Barut, E. N., & Engin, S. (2019). Trimebutine maleate relaxes the isolated rat thoracic aorta: The role of nitric oxide and L-type calcium channels. Clinical and Experimental Pharmacology and Physiology, 46, 322–328.

    Article  CAS  PubMed  Google Scholar 

  23. Cicek, F. A., Kandilci, H. B., & Turan, B. (2013). Role of ROCK upregulation in endothelial and smooth muscle vascular functions in diabetic rat aorta. Cardiovascular Diabetology, 12, 51.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Leng, B., Tang, F., Lu, M., Zhang, Z., Wang, H., & Zhang, Y. (2018). Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sciences, 209, 111–121.

    Article  CAS  PubMed  Google Scholar 

  25. Aronson, D., & Edelman, E. R. (2014). Coronary artery disease and diabetes mellitus. Cardiology Clinics, 32(3), 439–455.

    Article  PubMed  PubMed Central  Google Scholar 

  26. van Dieren, S., Beulens, J. W., van der Schouw, Y. T., Grobbee, D. E., & Neal, B. (2010). Theglobal burden of diabetes its complications: An emerging pandemic. European Journal of Cardiovascular Prevention and Rehabilitation, 17(1), 3–8.

    Google Scholar 

  27. Rodriguez-Araujo, G., & Nakagami, H. (2018). Pathophysiology of cardiovascular disease in diabetes mellitus. Cardiovascular Endocrinology and Metabolism, 7(1), 4–9.

    Article  CAS  PubMed  Google Scholar 

  28. Bakker, W., Eringa, E. C., Sipkema, P., & van Hinsbergh, V. W. M. (2009). Endothelial dysfunction and diabetes: Roles of hyperglycemia, impaired insulin signaling and obesity. Cell and Tissue Research, 335, 165–189.

    Article  CAS  PubMed  Google Scholar 

  29. Tabit, C. E., Chung, W. B., Hamburg, N. M., & Vita, J. A. (2010). Endothelial dysfunction in diabetes mellitus: Molecular mechanisms and clinical implications. Reviews in Endocrine and Metabolic Disorders, 11(1), 61–74.

    Article  CAS  PubMed  Google Scholar 

  30. Kukreja, R. C., & Xi, L. (2007). eNOS phosphorylation: A pivotal molecular switch in vasodilation and cardioprotection? Journal of Molecular and Cellular Cardiology, 42(2), 280–282.

    Article  CAS  PubMed  Google Scholar 

  31. Davis, B. J., Xie, Z., Viollet, B., & Zou, M. H. (2006). Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes, 55(2), 496–505.

    Article  CAS  PubMed  Google Scholar 

  32. Erdogdu, O., Nathanson, D., Sjöholm, A., Nyström, T., & Zhang, Q. (2010). Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Molecular and Cellular Endocrinology, 325(1–2), 26–35.

    Article  CAS  PubMed  Google Scholar 

  33. van den Oever, I. A., Raterman, H. G., Nurmohamed, M. T., & Simsek, S. (2010). Endothelial dysfunction, inflammation, and apoptosis in diabetes mellitus. Mediators of Inflammation, 2010, 792393.

    PubMed  PubMed Central  Google Scholar 

  34. Faries, P. L., Rohan, D. I., Takahara, H., Wyers, M. C., Contreras, M. A., Quist, W. C., et al. (2001). Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration. Journal of Vascular Surgery, 33(3), 601–607.

    Article  CAS  PubMed  Google Scholar 

  35. Huang, M., Qiu, Q., Zeng, S., Xiao, Y., Shi, M., Zou, Y., et al. (2015). Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells. Inflammation research: Official journal of the European Histamine Research Society, 64(12), 1023–1032.

    Article  CAS  Google Scholar 

  36. Xiao, X. L., Hu, N., Zhang, X. Z., Jiang, M., Chen, C., Ma, R., et al. (2018). Niclosamide inhibits vascular smooth muscle cell proliferation and migration and attenuates neointimal hyperplasia in injured rat carotid arteries. British Journal of Pharmacology, 175(10), 1707–1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khodadadi, S., Zabihi, N. A., Niazmand, S., Abbasnezhad, A., Mahmoudabady, M., & Rezaee, S. A. (2018). Teucrium polium improves endothelial dysfunction by regulating eNOS and VCAM-1 genes expression and vasoreactivity in diabetic rat aorta. Biomedicine and Pharmacotherapy, 103, 1526–1530.

    Article  CAS  PubMed  Google Scholar 

  38. Taguchi, K., Narimatsu, H., Matsumoto, T., & Kobayashi, T. (2019). ERK-containing microparticles from a diabetic mouse induce endothelial dysfunction. Journal of Endocrinology, 241(3), 221–233.

    Article  CAS  Google Scholar 

  39. Coban, O., Aytac, Z., Yildiz, Z. I., & Uyar, T. (2020). Colon targeted delivery of niclosamide from β-cyclodextrin inclusion complex incorporated electrospun Eudragit® L100 nanofibers. Colloids and Surfaces B: Biointerfaces, 197, 111391.

    Article  PubMed  Google Scholar 

  40. Xu, N., Wang, Q., Jiang, S., Wang, Q., Hu, W., Zhou, S., et al. (2019). Fenofibrate improves vascular endothelial function and contractility in diabetic mice. Redox Biology, 20, 87–97.

    Article  CAS  PubMed  Google Scholar 

  41. Tao, H., Zhang, Y., Zeng, X., Shulman, G. I., & Jin, S. (2014). Niclosamide ethanolamine-induced mild mitochondrial uncoupling improves diabetic symptoms in mice. Nature Medicine, 11, 1263–1269.

    Article  Google Scholar 

  42. Suzuki, T., Kojima, M., Matsumoto, Y., Kobayashi, K. I., Inoue, J., & Yamamoto, Y. (2020). Niclosamide activates the AMP-activated protein kinase complex containing the β2 subunit independently of AMP. Biochemical and Biophysical Research Communications, 533(4), 758–763.

    Article  CAS  PubMed  Google Scholar 

  43. Taguchi, K., Tano, I., Kaneko, N., Matsumoto, T., & Kobayashi, T. (2020). Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomedicine and Pharmacotherapy, 129, 110463.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study supported by the grants from the Scientific Research Project Coordination Unit of Karadeniz Technical University (Project No. TDK-2018-7328).

Author information

Authors and Affiliations

Authors

Contributions

Concept—SE; design—SE, YKY; supervision—SFS; materials—SE, YKY, and ENB, data collection and/or processing—SE, YKY, and ENB; analysis and/or interpretation—SE and YKY; literature search—SE and YKY; writing—SE and SFS; critical review—SE, YKY, ENB, and SFS.

Corresponding author

Correspondence to Seckin Engin.

Ethics declarations

Conflict of ınterest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Handling Editor: Travis Knuckles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engin, S., Yasar, Y.K., Barut, E.N. et al. Improved Endothelium-Dependent Relaxation of Thoracic Aorta in Niclosamide-Treated Diabetic Rats. Cardiovasc Toxicol 21, 563–571 (2021). https://doi.org/10.1007/s12012-021-09647-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09647-0

Keywords

Navigation