Skip to main content

Advertisement

Log in

MiR-15b-5p is Involved in Doxorubicin-Induced Cardiotoxicity via Inhibiting Bmpr1a Signal in H9c2 Cardiomyocyte

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The wide use of anthracyclines represented by doxorubicin (DOX) has benefited cancer patients, yet the clinical application is limited due to its cardiotoxicity. Although numerous evidences have supported a role of microRNAs (miRNAs) in DOX-induced myocardial damage, the exact etiology and pathogenesis remain largely obscure. In this study, we focused on the role of miR-15b-5p in DOX-induced cardiotoxicity. We employed a public miRNA and gene microarray to screen differentially expressed miRNAs (DEMs) and differentially expressed genes (DEGs) in rat cardiomyocytes, and 33 DEMs including miR-15b-5p and 237 DEGs including Bmpr1a and Gata4 were identified. The Gene ontology (GO) and pathway enrichment analysis of 237 DEGs indicated that the DEGs were mainly enriched in heart development and ALK pathway in cardiomyocyte which included the main receptor Bmpr1a and transcription factor Gata4. The up-regulated miR-15b-5p and down-regulated Bmpr1a and Gata4 mRNA expressions were further validated in H9c2 cardiomyocytes exposed to DOX. Moreover, the results showed overexpression of miR-15b-5p or inhibition of Bmpr1a may enhance the DOX-induced apoptosis, oxidative stress and mitochondria damage in H9c2 cardiomyocytes. The Bmpr1a was suggested as a potential target of miR-15b-5p by bioinformatics prediction. We further verified the negatively regulatory effect of miR-15b-5p on Bmpr1a signaling. Moreover, we also confirmed that overexpression of miR-15b-5p may exacerbate the DOX-induced apoptosis of H9c2 cardiomyocytes by affecting the protein expression ratio of Bcl-2/Bax and Akt activation, while this pro-apoptotic effect was able to be suppressed by Bmpr1a agonist. Collectively, the results suggest that miR-15b-5p is likely involved in doxorubicin-induced cardiotoxicity via inhibiting Bmpr1a signaling in H9c2 cardiomyocytes. Our study provides a novel insight for investigating DOX-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roca-Alonso, L., Castellano, L., Mills, A., Dabrowska, A. F., Sikkel, M. B., Pellegrino, L.,et al (2015). Myocardial MiR-30 downregulation triggered by doxorubicin drives alterations in beta-adrenergic signaling and enhances apoptosis. Cell Death & Disease, 6, e1754.

    Article  CAS  Google Scholar 

  2. Zhao, L., Qi, Y., Xu, L., Tao, X., Han, X., Yin, L.,et al (2018). MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress Via targeting Nrf2 and Sirt2. Redox Biology, 15, 284–296.

    Article  PubMed  CAS  Google Scholar 

  3. Mukhopadhyay, P., Rajesh, M., Batkai, S., Kashiwaya, Y., Hasko, G., Liaudet, L.,et al (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F.,et al (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.

    Article  PubMed  CAS  Google Scholar 

  5. Pecoraro, M., Del, P. M., Marzocco, S., Sorrentino, R., Ciccarelli, M., Iaccarino, G.,et al (2016). Inflammatory Mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicology and Applied Pharmacology, 293, 44–52.

    Article  PubMed  CAS  Google Scholar 

  6. Wang, J. X., Zhang, X. J., Feng, C., Sun, T., Wang, K., Wang, Y.,et al (2015). MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death & Disease, 6, e1677.

    Article  CAS  Google Scholar 

  7. Liu, L. F., Liang, Z., Lv, Z. R., Liu, X. H., Bai, J., Chen, J.,et al (2012). MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. Journal of Geriatric Cardiology, 9, 28–32.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, L., Zhang, G., Liang, Z., Liu, X., Li, T., Fan, J.,et al (2014). MicroRNA-15b enhances hypoxia/reoxygenation-induced apoptosis of cardiomyocytes via a mitochondrial apoptotic pathway. Apoptosis, 19, 19–29.

    Article  PubMed  CAS  Google Scholar 

  9. Roy, S., Banerjee, J., Gnyawali, S. C., Khanna, S., He, G., Pfeiffer, D.,et al (2013). Suppression of induced microrna-15b prevents rapid loss of cardiac function in a dicer depleted model of cardiac dysfunction. PLoS ONE, 8, e66789.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Nishi, H., Ono, K., Iwanaga, Y., Horie, T., Nagao, K., Takemura, G.,et al (2010). MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. Journal of Biological Chemistry, 285, 4920–4930.

    Article  PubMed  CAS  Google Scholar 

  11. Jain, S., Wei, J., Mitrani, L. R., & Bishopric, N. H. (2012). Auto-acetylation stabilizes P300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Research and Treat, 135, 103–114.

    Article  CAS  Google Scholar 

  12. Wan, G., Ji, L., Xia, W., Cheng, L., & Zhang, Y. (2018). Screening genes associated with elevated neutrophiltolymphocyte ratio in chronic heart failure. Molecular Medicine Reports, 18, 1415–1422.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W.,et al (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43, e47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R Package for comparing biological themes among gene clusters. Omics-A Journal of Integrative Biology, 16, 284–287.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Zhao, L., Tao, X., Qi, Y., Xu, L., Yin, L., & Peng, J. (2018). Protective effect of dioscin against doxorubicin-induced cardiotoxicity via adjusting microRNA-140-5p-mediated myocardial oxidative stress. Redox Biology, 16, 189–198.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Zhang, A., Sheng, Y., & Zou, M. (2017). Antiproliferative activity of alisol B in MDA-MB-231 cells is mediated by apoptosis, dysregulation of mitochondrial functions, cell cycle arrest and generation of reactive oxygen species. Biomedicine & Pharmacotherapy, 87, 110–117.

    Article  CAS  Google Scholar 

  17. Holmgren, G., Synnergren, J., Andersson, C. X., Lindahl, A., & Sartipy, P. (2016). MicroRNAs as potential biomarkers for doxorubicin-induced cardiotoxicity. Toxicology in Vitro, 34, 26–34.

    Article  PubMed  CAS  Google Scholar 

  18. Chaudhari, U., Nemade, H., Gaspar, J. A., Hescheler, J., Hengstler, J. G., & Sachinidis, A. (2016). MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Archives of Toxicology, 90, 3087–3098.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Ruggeri, C., Gioffre, S., Achilli, F., Colombo, G. I., & D’Alessandra, Y. (2018). Role of microRNAs in doxorubicin-induced cardiotoxicity: An overview of preclinical models and cancer patients. Heart Failure Reviews, 23, 109–122.

    Article  PubMed  CAS  Google Scholar 

  20. Gaussin, V., Morley, G. E., Cox, L., Zwijsen, A., Vance, K. M., Emile, L.,et al (2005). Alk3/Bmpr1a receptor is required for development of the atrioventricular canal into valves and annulus fibrosus. Circulation Research, 97, 219–226.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Breckpot, J., Tranchevent, L. C., Thienpont, B., Bauters, M., Troost, E., Gewillig, M.,et al (2012). BMPR1A is a candidate gene for congenital heart defects associated with the recurrent 10Q22q23 deletion syndrome. European Journal of Medical Genetics, 55, 12–16.

    Article  PubMed  Google Scholar 

  22. El-Bizri, N., Wang, L., Merklinger, S. L., Guignabert, C., Desai, T., Urashima, T.,et al (2008). Smooth muscle protein 22Alpha-mediated patchy deletion of Bmpr1a impairs cardiac contractility but protects against pulmonary vascular remodeling. Circulation Research, 102, 380–388.

    Article  PubMed  CAS  Google Scholar 

  23. Kobayashi, S., Volden, P., Timm, D., Mao, K., Xu, X., & Liang, Q. (2010). Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. Journal of Biological Chemistry, 285, 793–804.

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi, S., Lackey, T., Huang, Y., Bisping, E., Pu, W. T., Boxer, L. M.,et al (2006). Transcription factor Gata4 regulates cardiac BCL2 gene expression in vitro and in vivo. Faseb Journal, 20, 800–802.

    Article  PubMed  CAS  Google Scholar 

  25. Wu, Y., Zhou, X., Huang, X., Xia, Q., Chen, Z., Zhang, X.,et al (2016). Pax8 plays a pivotal role in regulation of cardiomyocyte growth and senescence. Journal of Cellular and Molecular Medicine, 20, 644–654.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yang, D., Lai, D., Huang, X., Shi, X., Gao, Z., Huang, F.,et al (2012). The defects in development and apoptosis of cardiomyocytes in mice lacking the transcriptional factor Pax-8. International Journal of Cardiology, 154, 43–51.

    Article  PubMed  Google Scholar 

  27. Sui, X., Li, D., Qiu, H., Gaussin, V., & Depre, C. (2009). Activation of the bone morphogenetic protein receptor by H11kinase/Hsp22 promotes cardiac cell growth and survival. Circulation Research, 104, 887–895.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Handling Editor: Gen Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Gx., Cheng, L., Qin, Hl. et al. MiR-15b-5p is Involved in Doxorubicin-Induced Cardiotoxicity via Inhibiting Bmpr1a Signal in H9c2 Cardiomyocyte. Cardiovasc Toxicol 19, 264–275 (2019). https://doi.org/10.1007/s12012-018-9495-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-018-9495-6

Keywords

Navigation