Skip to main content
Log in

Drug Resistance of Endocardial Endothelial Cells is Related to Higher Endogenous ABCG2

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Endocardial endothelial cells (EECs), when compared with endothelial cells of arteries and veins, possess higher resistance to apoptosis-inducing anticancer agents. The mechanism of this resistance property is unknown. We have investigated the molecular mechanism, which contributes to increased cell survival capacity in EECs. We explored whether the resistance to apoptosis is associated with the cellular expression of ATP-binding cassette transporters such as P-glycoprotein, MRP-1, and ABCG2. We used primary and immortalized porcine endocardial endothelial cells (PEECs and hTERT PEECs) and compared the results with that in porcine aortic endothelial cells (PAECs), left atrioventricular valve endothelial cells (PVECs), and human umbilical vein endothelial cell line (EA.hy926). FACS and immunoblot analysis revealed a significantly higher expression of ABCG2 in PEECs and hTERT PEECs compared to PAECs, PVECs, and EA.hy926. Using apoptosis-inducing anticancer agents such as doxorubicin and camptothecin, through chromatin condensation assay and immunoblot analysis, we demonstrated a higher resistance to apoptosis in EECs compared to PAECs, PVECs, and EA.hy926. Interestingly, resistance in EECs reversed in presence of ABCG2 specific inhibitor, fumitremorgin C. Our observations suggest that an inherently high expression of ABCG2 in EECs protects them against apoptosis in presence of anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aird, W. C. (2005). Spatial and temporal dynamics of the endothelium. Journal of thrombosis and haemostasis: JTH, 3, 1392–1406.

    Article  CAS  PubMed  Google Scholar 

  2. Kuruvilla, L., & Kartha, C. C. (2003). Molecular mechanisms in endothelial regulation of cardiac function. Molecular and Cellular Biochemistry, 253, 113–123.

    Article  CAS  PubMed  Google Scholar 

  3. Brutsaert, D. L., Fransen, P., Andries, L. J., De Keulenaer, G. W., & Sys, S. U. (1998). Cardiac endothelium and myocardial function. Cardiovascular Research, 38, 281–290.

    Article  CAS  PubMed  Google Scholar 

  4. Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circulation Research, 100, 158–173.

    Article  CAS  PubMed  Google Scholar 

  5. Cooke, J. P. (2000). The endothelium: A new target for therapy. Vascular Medicine, 5, 49–53.

    Article  CAS  PubMed  Google Scholar 

  6. Sys, S. U., Pellegrino, D., Mazza, R., Gattuso, A., Andries, L. J., & Tota, L. (1997). Endocardial endothelium in the avascular heart of the frog: Morphology and role of nitric oxide. The Journal of Experimental Biology, 200, 3109–3118.

    CAS  PubMed  Google Scholar 

  7. Rubanyi, G. M. (1993). The role of endothelium in cardiovascular homeostasis and diseases. Journal of Cardiovascular Pharmacology, 22(Suppl 4), S1–14.

    Article  CAS  PubMed  Google Scholar 

  8. Szakacs, G., Varadi, A., Ozvegy-Laczka, C., & Sarkadi, B. (2008). The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME-Tox). Drug Discovery Today, 13, 379–393.

    Article  CAS  PubMed  Google Scholar 

  9. Woodward, O. M., Kottgen, A., & Kottgen, M. (2011). ABCG transporters and disease. The FEBS Journal, 278, 3215–3225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen, S., Callaghan, D., Juzwik, C., Xiong, H., Huang, P., & Zhang, W. (2010). ABCG2 reduces ROS-mediated toxicity and inflammation: A potential role in Alzheimer’s disease. Journal of Neurochemistry, 114, 1590–1604.

    Article  CAS  PubMed  Google Scholar 

  11. Krishnamurthy, P., Ross, D. D., Nakanishi, T., Bailey-Dell, K., Zhou, S., Mercer, K. E., et al. (2004). The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. The Journal of Biological Chemistry, 279, 24218–24225.

    Article  CAS  PubMed  Google Scholar 

  12. Krishnamurthy, P., Xie, T., & Schuetz, J. D. (2007). The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology and Therapeutics, 114, 345–358.

    Article  CAS  PubMed  Google Scholar 

  13. Tamura, A., Watanabe, M., Saito, H., Nakagawa, H., Kamachi, T., Okura, I., et al. (2006). Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: Identification of alleles that are defective in porphyrin transport. Molecular Pharmacology, 70, 287–296.

    CAS  PubMed  Google Scholar 

  14. Higashikuni, Y., Sainz, J., Nakamura, K., Takaoka, M., Enomoto, S., Iwata, H., et al. (2012). The ATP-binding cassette transporter ABCG2 protects against pressure overload-induced cardiac hypertrophy and heart failure by promoting angiogenesis and antioxidant response. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 654–661.

    Article  CAS  PubMed  Google Scholar 

  15. Bates, S. E., Medina-Perez, W. Y., Kohlhagen, G., Antony, S., Nadjem, T., Robey, R. W., et al. (2004). ABCG2 mediates differential resistance to SN-38 (7-ethyl-10-hydroxycamptothecin) and homocamptothecins. The Journal of Pharmacology and Experimental Therapeutics, 310, 836–842.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, C., Li, H., Li, J., Zhu, Z., Yin, S., Hao, X., et al. (2008). Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis, 29, 2289–2297.

    Article  CAS  PubMed  Google Scholar 

  17. Higashikuni, Y., Sainz, J., Nakamura, K., Takaoka, M., Enomoto, S., Iwata, H., et al. (2010). The ATP-binding cassette transporter BCRP1/ABCG2 plays a pivotal role in cardiac repair after myocardial infarction via modulation of microvascular endothelial cell survival and function. Arteriosclerosis, Thrombosis, and Vascular Biology, 30, 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  18. Maney, S. K., Johnson, A. M., Sampath Kumar, A., Nair, V., Santhosh Kumar, T. R., & Kartha, C. C. (2011). Effect of apoptosis-inducing antitumor agents on endocardial endothelial cells. Cardiovascular Toxicology, 11, 253–262.

    Article  CAS  PubMed  Google Scholar 

  19. Kuruvilla, L., & Kartha, C. C. (2007). Immortalization and characterization of porcine ventricular endocardial endothelial cells. Endothelium: Journal of Endothelial Cell Research, 14, 35–43.

    Article  CAS  Google Scholar 

  20. Smith, J. A., Radomski, M. W., Schulz, R., Moncada, S., & Lewis, M. J. (1993). Porcine ventricular endocardial cells in culture express the inducible form of nitric oxide synthase. British Journal of Pharmacology, 108, 1107–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ando, H., Kubin, T., Schaper, W., & Schaper, J. (1999). Cardiac microvascular endothelial cells express alpha-smooth muscle actin and show low NOS III activity. The American Journal of Physiology, 276, H1755–H1768.

    CAS  PubMed  Google Scholar 

  22. Gould, R. A., & Butcher, J. T. (2010). Isolation of valvular endothelial cells. Journal of Visualized Experiments: JoVE. doi:10.3791/2158.

    Google Scholar 

  23. Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.

    Article  CAS  PubMed  Google Scholar 

  24. Shadle, S. E., Bammel, B. P., Cusack, B. J., Knighton, R. A., Olson, S. J., Mushlin, P. S., et al. (2000). Daunorubicin cardiotoxicity: Evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochemical Pharmacology, 60, 1435–1444.

    Article  CAS  PubMed  Google Scholar 

  25. Tonini, T., Gabellini, C., Bagella, L., D’Andrilli, G., Masciullo, V., Romano, G., et al. (2004). pRb2/p130 decreases sensitivity to apoptosis induced by camptothecin and doxorubicin but not by taxol. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 10, 8085–8093.

    Article  CAS  Google Scholar 

  26. Sen, N., Das, B. B., Ganguly, A., Mukherjee, T., Tripathi, G., Bandyopadhyay, S., et al. (2004). Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate Leishmania donovani. Cell Death and Differentiation, 11, 924–936.

    Article  CAS  PubMed  Google Scholar 

  27. Schinkel, A. H., & Jonker, J. W. (2003). Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Advanced Drug Delivery Reviews, 55, 3–29.

    Article  CAS  PubMed  Google Scholar 

  28. Haimeur, A., Conseil, G., Deeley, R. G., & Cole, S. P. (2004). The MRP-related and BCRP/ABCG2 multidrug resistance proteins: Biology, substrate specificity and regulation. Current Drug Metabolism, 5, 21–53.

    Article  CAS  PubMed  Google Scholar 

  29. Del Vecchio, C. A., Feng, Y., Sokol, E. S., Tillman, E. J., Sanduja, S., Reinhardt, F., et al. (2014). De-differentiation confers multidrug resistance via noncanonical PERK-Nrf2 signaling. PLoS Biology, 12, e1001945.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bentires-Alj, M., Barbu, V., Fillet, M., Chariot, A., Relic, B., Jacobs, N., et al. (2003). NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene, 22, 90–97.

    Article  CAS  PubMed  Google Scholar 

  31. Wang, X. J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., et al. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 29, 1235–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albini, A., Pennesi, G., Donatelli, F., Cammarota, R., De Flora, S., & Noonan, D. M. (2010). Cardiotoxicity of anticancer drugs: The need for cardio-oncology and cardio-oncological prevention. Journal of the National Cancer Institute, 102, 14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dresdale, A. R., Barr, L. H., Bonow, R. O., Mathisen, D. J., Myers, C. E., Schwartz, D. E., et al. (1982). Prospective randomized study of the role of N-acetyl cysteine in reversing doxorubicin-induced cardiomyopathy. American Journal of Clinical Oncology, 5, 657–663.

    Article  CAS  PubMed  Google Scholar 

  34. Baudin, B., Beneteau-Burnat, B., & Giboudeau, J. (1996). Cytotoxicity of amiodarone in cultured human endothelial cells. Cardiovascular Drugs and Therapy/Sponsored by the International Society of Cardiovascular Pharmacotherapy, 10, 557–560.

    Article  CAS  PubMed  Google Scholar 

  35. Lazo, J. S. (1986). Endothelial injury caused by antineoplastic agents. Biochemical Pharmacology, 35, 1919–1923.

    Article  CAS  PubMed  Google Scholar 

  36. Yamac, D., Elmas, C., Ozogul, C., Keskil, Z., & Dursun, A. (2006). Ultrastructural damage in vascular endothelium in rats treated with paclitaxel and doxorubicin. Ultrastructural Pathology, 30, 103–110.

    Article  PubMed  Google Scholar 

  37. Hori, S., Ohtsuki, S., Tachikawa, M., Kimura, N., Kondo, T., Watanabe, M., et al. (2004). Functional expression of rat ABCG2 on the luminal side of brain capillaries and its enhancement by astrocyte-derived soluble factor(s). Journal of Neurochemistry, 90, 526–536.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, W., Mojsilovic-Petrovic, J., Andrade, M. F., Zhang, H., Ball, M., & Stanimirovic, D. B. (2003). The expression and functional characterization of ABCG2 in brain endothelial cells and vessels. The FASEB Journal, 17, 2085–2087.

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by Department of Biotechnology, Government of India (DBT Sanction No. BT/PR13582/MED/30/285/2010). Ajith Kumar G.S. received Senior Research Fellowship from Council of Scientific and Industrial Research, Government of India. Binilraj S.S. was supported with Senior Research Fellowship from Indian Council of Medical Research, Government of India. Authors also acknowledge Prof. Edgell, (Pathology Department, University of North Carolina, Chapel Hill, USA) for the kind supply of EAhy.926 cell line and Dr. T.R. Santhosh Kumar for the scientific and technical inputs that helped in the improved execution of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. S. Ajithkumar or C. C. Kartha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajithkumar, G.S., Vinitha, A., Binil Raj, S.S. et al. Drug Resistance of Endocardial Endothelial Cells is Related to Higher Endogenous ABCG2. Cardiovasc Toxicol 16, 390–405 (2016). https://doi.org/10.1007/s12012-015-9351-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9351-x

Keywords

Navigation