Skip to main content
Log in

The Phosphorylation State of GSK3β Serine 9 Correlated to the Development of Valproic Acid-Associated Fetal Cardiac Teratogenicity, Fetal VPA Syndrome, Rescued by Folic Acid Administration

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

The effects of the phosphorylation state of the glycogen synthase kinase 3β involved in the cardiac myocytes (jelly-like cells) epithelial–mesenchymal transition-associated migration during heart-valve formation were examined through the valproic acid-induced cardiac teratogenicity of transgenic line A34 of Tg in a the Brachydanio rerio embryo model. Valproic acid is an effective anti-epileptic drug; however, when taken by pregnant women to treat epilepsy, it can produce cardiac developmental defects in fetuses. In this study, the role of glycogen synthase kinase 3β in valproic acid-induced cardiac teratogenicity was investigated. Transgenic line A34 of zebrafish embryos was used at 3 days postfertilization. The results show that 78 % (18/23) of the embryos treated with 0.10 mM valproic acid (group A) had incomplete chamber formation with normal looping and 22 % (5/23) had abnormal looping. Bradycardia was also found in comparison with control embryos (P < 0.001). For the embryos treated with 0.25 mM valproic acid (group B), 92 % (22/24) demonstrated chamber formation failure and looping abnormality. Pericardial effusion, noncontracting ventricles, and enlarged, slowly beating atriums were observed at 6 days postfertilization. Valproic acid inhibited phosphorylation of serine 9 in glycogen synthase kinase 3β in a dose-dependent manner. According to immunochemical staining results, valproic acid was shown to inhibit the mass migration and proliferation of cardiomyocytes in the development of the heart-valve region through inhibition of the GSK3β Ser 9 phosphorylation. Folic acid rescued the GSK3β Ser 9 phosphorylation and reversed the valproic acid-induced cardiac morphological, functional, and biochemical defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Binkerd, P. E., Rowland, J. M., Nau, H., & Hendrickx, A. G. (1988). Evaluation of valproic acid (VPA) developmental toxicity and pharmacokinetics in Sprague–Dawley rats. Fundamental and Applied Toxicology: Official Journal of the Society of Toxicology, 11, 485–493.

    Article  CAS  Google Scholar 

  2. Hendrickx, A. G., Nau, H., Binkerd, P., Rowland, J. M., Rowland, J. R., Cukierski, M. J., & Cukierski, M. A. (1988). Valproic acid developmental toxicity and pharmacokinetics in the rhesus monkey: An interspecies comparison. Teratology, 38, 329–345.

    Article  CAS  PubMed  Google Scholar 

  3. Menegola, E., Di Renzo, F., Broccia, M. L., Prudenziati, M., Minucci, S., Massa, V., & Giavini, E. (2005). Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Research, Part B: Developmental and Reproductive Toxicology, 74, 392–398.

    Article  CAS  Google Scholar 

  4. Sonoda, T., Ohdo, S., Ohba, K., Okishima, T., & Hayakawa, K. (1993). Sodium valproate-induced cardiovascular abnormalities in the Jcl: ICR mouse fetus: Peak sensitivity of gestational day and dose-dependent effect. Teratology, 48, 127–132.

    Article  CAS  PubMed  Google Scholar 

  5. Yerby, M. S. (2003). Management issues for women with epilepsy: Neural tube defects and folic acid supplementation. Neurology, 61, S23–S26.

    Article  CAS  PubMed  Google Scholar 

  6. Wilson, R. D., Johnson, J. A., Wyatt, P., Allen, V., Gagnon, A., Langlois, S., et al. (2007). Pre-conceptional vitamin/folic acid supplementation 2007: The use of folic acid in combination with a multivitamin supplement for the prevention of neural tube defects and other congenital anomalies. Journal of Obstetrics and Gynaecology Canada: JOGC = Journal d’obstetrique et gynecologie du Canada: JOGC, 29, 1003–1026.

    PubMed  Google Scholar 

  7. Kozma, C. (2001). Valproic acid embryopathy: Report of two siblings with further expansion of the phenotypic abnormalities and a review of the literature. American Journal of Medical Genetics, 98, 168–175.

    Article  CAS  PubMed  Google Scholar 

  8. Bianchi, M., De Lucchini, S., Marin, O., Turner, D. L., Hanks, S. K., & Villa-Moruzzi, E. (2005). Regulation of FAK Ser-722 phosphorylation and kinase activity by GSK3 and PP1 during cell spreading and migration. The Biochemical Journal, 391, 359–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harris, J. A., Francannet, C., Pradat, P., & Robert, E. (2003). The epidemiology of cardiovascular defects, part 2: A study based on data from three large registries of congenital malformations. Pediatric Cardiology, 24, 222–235.

    Article  CAS  PubMed  Google Scholar 

  10. Shader, R. I., & Greenblatt, D. J. (1990). Lithium and the newborn heart. Journal of Clinical Psychopharmacology, 10, 311.

    Article  CAS  PubMed  Google Scholar 

  11. Zierler, S. (1985). Maternal drugs and congenital heart disease. Obstetrics and Gynecology, 65, 155–165.

    CAS  PubMed  Google Scholar 

  12. Michael, A., Haq, S., Chen, X., Hsich, E., Cui, L., Walters, B., et al. (2004). Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic function in the heart. Journal of Biological Chemistry, 279, 21383–21393.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, H. C., Tsai, J. N., Liao, P. Y., Tsai, W. Y., Lin, K. Y., Chuang, C. C., et al. (2007). Glycogen synthase kinase 3α and 3β have distinct functions during cardiogenesis of zebrafish embryo. BMC Developmental Biology, 7, 93.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kerkela, R., Kockeritz, L., Macaulay, K., Zhou, J., Doble, B. W., Beahm, C., et al. (2008). Deletion of GSK-3β in mice leads to hypertrophic cardiomyopathy secondary to cardiomyoblast hyperproliferation. Journal Clinical Investigation, 118, 3609–3618.

    Article  CAS  Google Scholar 

  15. Fishman, M. C., & Chien, K. R. (1997). Fashioning the vertebrate heart: Earliest embryonic decisions. Development, 124, 2099–2117.

    CAS  PubMed  Google Scholar 

  16. Fishman, M. C., & Stainier, D. Y. (1994). Cardiovascular development. Prospects for a genetic approach. Circulation Research, 74, 757–763.

    Article  CAS  PubMed  Google Scholar 

  17. Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298, 2188–2190.

    Article  CAS  PubMed  Google Scholar 

  18. Raya, A., Koth, C. M., Buscher, D., Kawakami, Y., Itoh, T., Raya, R. M., et al. (2003). Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 1), 11889–11895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sehnert, A. J., Huq, A., Weinstein, B. M., Walker, C., Fishman, M., & Stainier, D. Y. (2002). Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nature Genetics, 31, 106–110.

    Article  CAS  PubMed  Google Scholar 

  20. Shu, X., Cheng, K., Patel, N., Chen, F., Joseph, E., Tsai, H. J., & Chen, J. N. (2003). Na, K-ATPase is essential for embryonic heart development in the zebrafish. Development, 130, 6165–6173.

    Article  CAS  PubMed  Google Scholar 

  21. Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., & Tsai, H. J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 228, 30–40.

    Article  CAS  Google Scholar 

  22. Westerfield, M. (2007). The zebrafish book: A guide for the laboratory use of zebrafish. Eugene: University of Oregon Press.

    Google Scholar 

  23. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the zebrafish. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 203, 253–310.

    Article  CAS  Google Scholar 

  24. Ho, Y. L., Shau, Y. W., Tsai, H. J., Lin, L. C., Huang, P. J., & Hsieh, F. J. (2002). Assessment of zebrafish cardiac performance using Doppler echocardiography and power angiography. Ultrasound in Medicine and Biology, 28, 1137–1143.

    Article  PubMed  Google Scholar 

  25. Dozawa, M., Kono, H., Sato, Y., Ito, Y., Tanaka, H., & Ohshima, T. (2014). Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 243, 1401–1415.

    Article  CAS  Google Scholar 

  26. Boku, S., Nakagawa, S., Masuda, T., Nishikawa, H., Kato, A., Takamura, N., et al. (2014). Valproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3β and β-catenin pathway. European Journal of Pharmacology, 723, 425–430.

    Article  CAS  PubMed  Google Scholar 

  27. Sintoni, S., Kurtys, E., Scandaglia, M., Contestabile, A., & Monti, B. (2013). Chronic valproic acid administration impairs contextual memory and dysregulates hippocampal GSK-3β in rats. Pharmacology, Biochemistry and Behavior, 106, 8–15.

    Article  CAS  PubMed  Google Scholar 

  28. Chen, G., Huang, L. D., Jiang, Y. M., & Manji, H. K. (1999). The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3. Journal of Neurochemistry, 72, 1327–1330.

    Article  CAS  PubMed  Google Scholar 

  29. Fuller, L. C., Cornelius, S. K., Murphy, C. W., & Wiens, D. J. (2002). Neural crest cell motility in valproic acid. Reproductive Toxicology, 16, 825–839.

    Article  CAS  PubMed  Google Scholar 

  30. Hardt, S. E., & Sadoshima, J. (2002). Glycogen synthase kinase-3β: A novel regulator of cardiac hypertrophy and development. Circulation Research, 90, 1055–1063.

    Article  CAS  PubMed  Google Scholar 

  31. Hua, F., Zhou, J., Liu, J., Zhu, C., Cui, B., Lin, H., et al. (2010). Glycogen synthase kinase-3β negatively regulates TGF-β1 and Angiotensin II-mediated cellular activity through interaction with Smad3. European Journal of Pharmacology, 644, 17–23.

    Article  CAS  PubMed  Google Scholar 

  32. Dawson, J. E., Raymond, A. M., & Winn, L. M. (2006). Folic acid and pantothenic acid protection against valproic acid-induced neural tube defects in CD-1 mice. Toxicology and Applied Pharmacology, 211, 124–132.

    Article  CAS  PubMed  Google Scholar 

  33. Verrotti, A., Tana, M., Pelliccia, P., Chiarelli, F., & Latini, G. (2006). Recent advances on neural tube defects with special reference to valproic acid. Endocrine, Metabolic & Immune Disorders: Drug Targets, 6, 25–31.

    Article  CAS  Google Scholar 

  34. Zhu, H., Wlodarczyk, B. J., Scott, M., Yu, W., Merriweather, M., Gelineau-van Waes, J., et al. (2007). Cardiovascular abnormalities in Folr1 knockout mice and folate rescue. Birth Defects Research, Part A: Clinical and Molecular Teratology, 79, 257–268.

    Article  CAS  Google Scholar 

  35. Harden, C. L., Pennell, P. B., Koppel, B. S., Hovinga, C. A., Gidal, B., Meador, K. J., et al. (2009). Practice parameter update: Management issues for women with epilepsy—Focus on pregnancy (an evidence-based review): Vitamin K, folic acid, blood levels, and breastfeeding: Report of the Quality Standards Subcommittee and Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and American Epilepsy Society. Neurology, 73, 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Buikema, J. W., Mady, A. S., Mittal, N. V., Atmanli, A., Caron, L., Doevendans, P. A., et al. (2013). Wnt/β-catenin signaling directs the regional expansion of first and second heart field-derived ventricular cardiomyocytes. Development, 140, 4165–4176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council (NSC 100-2314-B-002-004-MY3) and by the National Taiwan Hospital (NTUH 100S-1591), Taipei, Taiwan. We thank Mrs. Shuan-su C. Yu and Ms. Huei-Ru Tsai for their technical support.

Conflict of interest

The authors have no conflicts of interests to report or disclosures to make.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Hsuan Yu or Horng-Huei Liou.

Additional information

Yi-Lwun Ho and Po-Tsang Huang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, WH., Ho, YL., Huang, PT. et al. The Phosphorylation State of GSK3β Serine 9 Correlated to the Development of Valproic Acid-Associated Fetal Cardiac Teratogenicity, Fetal VPA Syndrome, Rescued by Folic Acid Administration. Cardiovasc Toxicol 16, 34–45 (2016). https://doi.org/10.1007/s12012-015-9316-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9316-0

Keywords

Navigation