Skip to main content
Log in

The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 07 April 2015

Abstract

We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Karila, T. (2003). Adverse effects of anabolic androgenic steroids on the cardiovascular, metabolic and reproductive systems of anabolic substance abusers. University of Helsinki.

  2. Kicman, A. (2008). Pharmacology of anabolic steroids. British Journal of Pharmacology, 154(3), 502–521.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Sullivan, M. L., Martinez, C. M., Gennis, P., & Gallagher, E. J. (1998). The cardiac toxicity of anabolic steroids. Progress in Cardiovascular Diseases, 41(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  4. Stergiopoulos, K., Brennan, J. J., Mathews, R., Setaro, J. F., & Kort, S. (2008). Anabolic steroids, acute myocardial infarction and polycythemia: A case report and review of the literature. Vascular health and risk management, 4(6), 1475.

    PubMed Central  PubMed  Google Scholar 

  5. Golestani, R., Slart, R. H., Dullaart, R. P., Glaudemans, A. W., Zeebregts, C. J., Boersma, H. H., et al. (2012). Adverse cardiovascular effects of anabolic steroids: Pathophysiology imaging. European Journal of Clinical Investigation, 42(7), 795–803.

    Article  PubMed  CAS  Google Scholar 

  6. Pereira-Junior, P. P., Chaves, E. A., Costa-e-Sousa, R. H., Masuda, M. O., de Carvalho, A. C. C., & Nascimento, J. H. (2006). Cardiac autonomic dysfunction in rats chronically treated with anabolic steroid. European Journal of Applied Physiology, 96(5), 487–494.

    Article  PubMed  CAS  Google Scholar 

  7. Cavasin, M. A., Tao, Z. Y., Yu, A. L., & Yang, X. P. (2006). Testosterone enhances early cardiac remodeling after myocardial infarction, causing rupture and degrading cardiac function. American Journal of Physiology-Heart and Circulatory Physiology, 290(5), H2043–H2050.

    Article  PubMed  CAS  Google Scholar 

  8. Crisostomo, P. R., Wang, M., Wairiuko, G. M., Morrell, E. D., & Meldrum, D. R. (2006). Brief exposure to exogenous testosterone increases death signaling and adversely affects myocardial function after ischemia. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 290(5), R1168–R1174.

    Article  PubMed  CAS  Google Scholar 

  9. Demirel, H. A., Powers, S. K., Zergeroglu, M. A., Shanely, R. A., Hamilton, K., Coombes, J., & Naito, H. (2001). Short-term exercise improves myocardial tolerance to in vivo ischemia-reperfusion in the rat. Journal of Applied Physiology, 91(5), 2205–2212.

    PubMed  CAS  Google Scholar 

  10. Domenech, R., Macho, P., Schwarze, H., & Sánchez, G. (2002). Exercise induces early and late myocardial preconditioning in dogs. Cardiovascular Reserch, 55(3), 561–566.

    Article  CAS  Google Scholar 

  11. Brown, D. A., Jew, K. N., Sparagna, G. C., Musch, T. I., & Moore, R. L. (2003). Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 95(6), 2510–2518.

    Article  PubMed  Google Scholar 

  12. Bauman, A. E. (2004). Updating the evidence that physical activity is good for health: An epidemiological review 2000–2003. Journal of science and medicine in sport, 7(1 suppl), 6–19.

    Article  PubMed  CAS  Google Scholar 

  13. Carmo, E. C., Rosa, K. T., Koike, D. C., Fernandes, T., Silva Junior, N. D., Mattos, K. C., et al. (2011). Association between anabolic steroids and aerobic physical training leads to cardiac morphological alterations and loss of ventricular function in rats. Revista Brasileira de Medicina do Esporte, 17(2), 137–141.

    Article  Google Scholar 

  14. Marques-Neto, S. R., Ferraz, E. B., Rodrigues, D. C., Njaine, B., Rondinelli, E., Campos de Carvalho, A. C., & Nascimento, J. H. (2014). AT1 and aldosterone receptors blockade prevents the chronic effect of nandrolone on the exercise-induced cardioprotection in perfused rat heart subjected to ischemia and reperfusion. Cardiovascular Drugs and Therapy, 28(2), 125–135.

    Article  PubMed  CAS  Google Scholar 

  15. Cunha, T. S., José, M., Moura, C. S., Bernardes, C. F., Tanno, A. P., & Marcondes, F. K. (2005). Vascular sensitivity to phenylephrine in rats submitted to anaerobic training and nandrolone treatment. Hypertension, 46(4), 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  16. Medei, E., Marocolo, M., Rodrigues Dde, C., Arantes, P. C., Takiya, C. M., Silva, J., et al. (2010). Chronic treatment with anabolic steroids induces ventricular repolarization disturbances: Cellular, ionic and molecular mechanism. Journal of Molecular and Cellular Cardiology, 49(2), 165–175.

  17. Luke, J. L., Farb, A., Virmani, R., & Sample, R. (1990). Sudden cardiac death during exercise in a weight lifter using anabolic androgenic steroids: Pathological and toxicological findings. Journal of Forensic Sciences, 35(6), 1441–1447.

    Article  PubMed  CAS  Google Scholar 

  18. Fineschi, V., Riezzo, I., Centini, F., Silingardi, E., Licata, M., Beduschi, G., et al. (2007). Sudden cardiac death during anabolic steroid abuse: Morphologic and toxicologic findings in two fatal cases of bodybuilders. International Journal of Legal Medicine, 121(1), 48–53.

    Article  PubMed  Google Scholar 

  19. Montisci, M., El Mazloum, R., Cecchetto, G., Terranova, C., Ferrara, S. D., Thiene, G., et al. (2012). Anabolic androgenic steroids abuse and cardiac death in athletes: Morphological and toxicological findings in four fatal cases. Forensic Science International, 217(1–3), e13–e18.

    Article  PubMed  CAS  Google Scholar 

  20. Barretti, D. L. M., de Castro Magalhães, F., Fernandes, T., do Carmo, E. C., Rosa, K. T., & Irigoyen, M. C. (2012). Effects of aerobic exercise training on cardiac renin-angiotensin system in an obese Zucker rat strain. PLoS One, 7(10), e46114.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Endlich, P. W., Firmes, L. B., Gonçalves, W. L., Gouvea, S. A., Moysés, M. R., Bissoli, N. S., et al. (2011). Involvement of the atrial natriuretic peptide in the reduction of arterial pressure induced by swimming but not by running training in hypertensive rats. Peptides, 32(8), 1706–1712.

    Article  PubMed  CAS  Google Scholar 

  22. Zamo, F., Barauna, V., Chiavegatto, S., Irigoyen, M., & Oliveira, E. (2011). The renin–angiotensin system is modulated by swimming training depending on the age of spontaneously hypertensive rats. Life Sciences, 89(3), 93–99.

    Article  PubMed  CAS  Google Scholar 

  23. Oliveira, E. M., Sasaki, M. S., Cerêncio, M., Baraúna, V. G., & Krieger, J. E. (2009). Local renin–angiotensin system regulates left ventricular hypertrophy induced by swimming training independent of circulating renin: A pharmacological study. Journal of the renin-angiotensin-aldosterone system, 10(1), 15–23.

    Article  PubMed  CAS  Google Scholar 

  24. Joukar, S., Ghorbani-shahrbabaky, S., Sheibani, V., Hajali, V., & Naghsh, N. (2013). Susceptibility to life-threatening ventricular arrhythmias in an animal model of paradoxical sleep deprivation. Sleep Medicine, 14, 1277–1282.

    Article  PubMed  Google Scholar 

  25. Joukar, S., Ghasemipour-Afshar, E., Sheibani, M., Naghsh, N., & Bashiri, A. (2013). Protective effects of saffron (Crocus sativus) against lethal ventricular arrhythmias induced by heart reperfusion in rat: A potential anti-arrhythmic agent. Pharmaceutical Biology, 51, 836–843.

    Article  PubMed  Google Scholar 

  26. Joukar, S., Zarisfi, Z., Sepehri, G., & Bashiri, A. (2014). Efficacy of melissa officinalis in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: A comparison with amiodarone. Medical principles and practice, 23, 340–345.

    Article  PubMed  Google Scholar 

  27. Curtis, M. J., Hancox, J. C., Farkas, A., Wainwright, C. L., Stables, C. L., Saint, D. A., et al. (2013). The Lambeth Conventions (II): Guidelines for the study of animal and human ventricular and supraventricular arrhythmias. Pharmacology & Therapeutics, 139, 213–248.

    Article  CAS  Google Scholar 

  28. Rocha, F. L., Carmo, E. C., Roque, F. R., Hashimoto, N. Y., Rossoni, L. V., Frimm, C., et al. (2007). Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. American Journal of Physiology, 293(6), H3575.

    PubMed  CAS  Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein estimation with the folinphenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  30. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358.

    Article  PubMed  CAS  Google Scholar 

  31. Joukar, S., Shahouzehi, B., Najafipour, H., Gholamhoseinian, A., & Joukar, F. (2012). Ameliorative effect of black tea on nicotine induced cardiovascular pathogenesis in rat. EXCLI Journal, 11, 309–317.

    Google Scholar 

  32. Kesava Reddy, G., & Enwemeka, C. S. (1996). A simplified method for the analysis of hydroxyproline in biological tissues. Clinical Biochemistry, 29(3), 225–229.

    Article  Google Scholar 

  33. Bissoli, N. S., Medeiros, A. R. S., Santos, M. C. S., Busato, V. C. W., Jarske, R. D., Abreu, G. R., et al. (2009). Long-term treatment with supraphysiological doses of nandrolone decanoate reduces the sensitivity of Bezold-Jarisch reflex control of heart rate and blood pressure. Pharmacological Research, 59(6), 379–384.

    Article  PubMed  CAS  Google Scholar 

  34. Medeiros, A., Oliveira, E., Gianolla, R., Casarini, D., Negrão, C., & Brum, P. C. (2004). Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Brazilian Journal of Medical and Biological Research, 37(12), 1909–1917.

    Article  PubMed  CAS  Google Scholar 

  35. Fernandes, T., Hashimoto, N. Y., Magalhães, F. C., Fernandes, F. B., Casarini, D. E., Carmona, A. K., et al. (2011). Aerobic exercise training induced LVH involves regulatory microRNAs, decreased ACE-ANG II, and synergistic regulation of ACE2-ANG (1–7). Hypertension, 58(2), 182–189.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Penna, C., Tullio, F., Perrelli, M. G., Moro, F., Abbadessa, G., Piccione, F., et al. (2011). Ischemia/reperfusion injury is increased and cardioprotection by a postconditioning protocol is lost as cardiac hypertrophy develops in nandrolone treated rats. Basic Research in Cardiology, 106(3), 409–420.

    Article  PubMed  CAS  Google Scholar 

  37. Franquni, J. V. M., do Nascimento, A. M., de Lima, E. M., Brasil, G. A., Heringer, O. A., Cassaro, K. O., et al. (2013). Nandrolone decanoate determines cardiac remodelling and injury by an imbalance in cardiac inflammatory cytokines and ACE activity, blunting of the Bezold-Jarisch reflex, resulting in the development of hypertension. Steroids, 78(3), 379–385.

    Article  PubMed  CAS  Google Scholar 

  38. Woodiwiss, A. J., & Norton, G. R. (1995). Exercise-induced cardiac hypertrophy is associated with an increased myocardial compliance. Journal of Applied Physiology, 78(4), 1303–1311.

    PubMed  CAS  Google Scholar 

  39. Soares, M. C. R., de Abreu, I. C., Assenço, F., & Borges, M. O. R. (2011). Nandrolone decanoate increases the left ventricular wall but attenuates the cavity increase caused by swimming training in rats. Revista Brasileira de Medicina do Esporte, 17(6), 420–424.

    Article  Google Scholar 

  40. Du Toit, E. F., Rossouw, E., Van Rooyen, J., & Lochner, A. (2005). Proposed mechanisms for the anabolic steroid-induced increase in myocardial susceptibility to ischaemia/reperfusion injury. Cardiovascular Journal of South Africa, 16(1), 21–28.

    PubMed  Google Scholar 

  41. Vanberg, P., & Atar, D. (2010). Androgenic anabolic steroid abuse and the cardiovascular system. Handbook of Experimental Pharmacology, 195, 411–457.

    Article  PubMed  CAS  Google Scholar 

  42. Fineschi, V. (2013). Chronic, supra-physiological doses of nandrolone decanoate and exercise induced cardio-toxicity in an animal-model study. Acta Physiologica, 208(2), 141–143.

    Article  PubMed  CAS  Google Scholar 

  43. Weber, K. T., & Brilla, C. G. (1991). Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation, 83, 1849–1865.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, J., Yeo, H. C., Övervik-Douki, E., Hagen, T., Doniger, S. J., Chu, D. W., et al. (2000). Chronically and acutely exercised rats: Biomarkers of oxidative stress and endogenous antioxidants. Journal of Applied Physiology, 89(1), 21–28.

    PubMed  CAS  Google Scholar 

  45. Osorio, R., Christofani, J., D’Almeida, V., Russo, A., & Picarro, I. (2003). Reactive oxygen species in pregnant rats: Effects of exercise and thermal stress. Comparative biochemistry and physiology. Toxicology & pharmacology, 135(1), 89–95.

    Article  CAS  Google Scholar 

  46. Ravi Kiran, T., Subramanyam, M., & Asha Devi, S. (2004). Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: Relationship to swim intensity and duration. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 137(2), 187–196.

    Article  CAS  Google Scholar 

  47. Gul, M., Demircan, B., Taysi, S., Oztasan, N., Gumustekin, K., Siktar, E., et al. (2006). Effects of endurance training and acute exhaustive exercise on antioxidant defense mechanisms in rat heart. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 143(2), 239–245.

    Article  CAS  Google Scholar 

  48. Tahtamouni, L. H., Mustafa, N. H., Hassan, I. M., Ahmad, I. M., Yasina, S. R., & Abdallaa, M. Y. (2010). Nandrolone decanoate administration to male rats induces oxidative stress, seminiferous tubules abnormalities, and sperm DNA fragmentation. Jordan Journal of Biological Sciences, 3(4), 165–174.

    CAS  Google Scholar 

  49. Nakatani, K., Komatsu, M., Kato, T., Yamanaka, T., Takekura, H., Wagatsuma, A., et al. (2005). Habitual exercise induced resistance to oxidative stress. Free Radical Research, 39(9), 905–911.

    Article  PubMed  CAS  Google Scholar 

  50. Sadowska-Krępa, E., Kłapcińska, B., Jagsz, S., Sobczak, A., Chrapusta, S. J., Chalimoniuk, M., et al. (2011). High-dose testosterone propionate treatment reverses the effects of endurance training on myocardial antioxidant defenses in adolescent male rats. Cardiovascular Toxicology, 11(2), 118–127.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Chaves, E. A., Fortunato, R. S., Carvalho, D. P., Nascimento, J. H. M., & Oliveira, M. F. (2013). Exercise-induced cardioprotection is impaired by anabolic steroid treatment through a redox-dependent mechanism. The Journal of steroid biochemistry and molecular biology, 138, 267–272.

    Article  PubMed  CAS  Google Scholar 

  52. Riezzo, I., Turillazzi, E., Bello, S., Cantatore, S., Cerretani, D., Di Paolo, M., et al. (2014). Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice. Toxicology and Applied Pharmacology, 280(1), 97–106.

    Article  PubMed  CAS  Google Scholar 

  53. Bruder-Nascimento, T., & Cordellini, S. (2011). Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration. Brazilian Journal of Medical and Biological Research, 44(4), 337–344.

    Article  PubMed  CAS  Google Scholar 

  54. Tseng, Y. T., Rockhold, R. W., Hoskins, B., & Ho, I. K. (1994). Cardiovascular toxicities of nandrolone and cocaine in spontaneously hypertensive rats. Fundamental and Applied Toxicology, 22(1), 113–121.

    Article  PubMed  CAS  Google Scholar 

  55. Maior, A. S., Belchior, C., Sanches, R. C., da Silva, T. O., Leonelli, T., Schwingel, P. A., et al. (2011). Chronic users of supraphysiological doses of anabolic androgenic steroids develop hematological and serum lipoprotein profiles that are characteristic of high cardiovascular risk. International Journal of Sport and Exercise Science, 3(2), 27–36.

    Google Scholar 

  56. Phillis, B. D., Abeywardena, M. Y., Adams, M. J., Kennedy, J. A., & Irvine, R. J. (2007). Nandrolone potentiates arrhythmogenic effects of cardiac ischemia in the rat. Toxicological Sciences, 99(2), 605–611.

    Article  PubMed  CAS  Google Scholar 

  57. Achar, S., Rostamian, A., & Narayan, S. M. (2010). Cardiac and metabolic effects of anabolic-androgenic steroid abuse on lipids, blood pressure, left ventricular dimensions, and rhythm. The American journal of cardiology, 106(6), 893–901.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Williams, P. T., & Franklin, B. A. (2013). Reduced incidence of cardiac arrhythmias in walkers and runners. PLoS One, 8(6), e65302.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Mont, L., Sambola, A., Brugada, J., Vacca, M., Marrugat, J., Elosua, R., et al. (2002). Long-lasting sport practice and lone atrial fibrillation. European Heart Journal, 23(6), 477–482.

    Article  PubMed  CAS  Google Scholar 

  60. Rodriguez, L. M., Waleffe, A., Brugada, P., Dehareng, A., Lezaun, R., Sternick, E. B., & Kulbertus, H. E. (1990). Exercise-induced sustained symptomatic ventricular tachycardia: Incidence, clinical, angiographic and electrophysiologic characteristics. European Heart Journal, 11(3), 225–232.

    PubMed  CAS  Google Scholar 

  61. Fujita, T., Konno, T., Yokawa, J., Masuta, E., Nagata, Y., Fujino, N., et al. (2014). Increased extent of myocardial fibrosis in genotyped hypertrophic cardiomyopathy with ventricular tachyarrhythmias. Journal of Cardiology, S0914–5087(14), 00294–00299.

    Google Scholar 

  62. Sovari, A. A., Rutledge, C. A., Jeong, E. M., Dolmatova, E., Arasu, D., Liu, H., et al. (2013). Mitochondria oxidative stress, connexin43 remodeling, and sudden arrhythmic death. Circulation. Arrhythmia and electrophysiology, 6(3), 623–631.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Kennedy, M., & Lawrence, C. (1993). Anabolic steroid abuse and cardiac death. The Medical journal of Australia, 158(5), 346–348.

    PubMed  CAS  Google Scholar 

  64. Ajayi, A. A., Mathur, R., & Halushka, P. V. (1995). Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation, 91(11), 2742–2747.

    Article  PubMed  CAS  Google Scholar 

  65. Goldschlager, N., Cake, D., & Cohn, K. (1973). Exercise-induced ventricular arrhythmias in patients with coronary artery disease: Their relation to angiographic findings. The American journal of cardiology, 31(4), 434–440.

    Article  PubMed  CAS  Google Scholar 

  66. Dickerman, R., Schaller, F., Prather, I., & McConathy, W. (1995). Sudden cardiac death in a 20-year-old bodybuilder using anabolic steroids. Cardiology, 86(2), 172–173.

    Article  PubMed  CAS  Google Scholar 

  67. Ferenchick, G. S., & Adelman, S. (1992). Myocardial infarction associated with anabolic steroid use in a previously healthy 37-year-old weight lifter. American Heart Journal, 124(2), 507–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Vice Chancellor of Research, Kerman University of Medical Sciences for financial support. The data presented in this article are from a Master thesis (Fateme Binayi) performed in the Department of Physiology of School of Medicine and Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyavash Joukar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binayi, F., Joukar, S., Najafipour, H. et al. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias. Cardiovasc Toxicol 16, 23–33 (2016). https://doi.org/10.1007/s12012-015-9313-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-015-9313-3

Keywords

Navigation