Skip to main content

Advertisement

Log in

Glycolaldehyde Induces Oxidative Stress in the Heart: A Clue to Diabetic Cardiomyopathy?

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Cardiovascular complications account for 80% of the mortality related to diabetes mellitus. Hyperglycemia is believed to be the major culprit of angiopathy and cardiomyopathy. High glucose levels and oxidative stress cause elevation of Advanced Glycation End-products that are known to contribute to diabetic complications and correlate with many diseases. However, there are few reports describing the effects of glycating agents other than glucose. Here, we aimed to evaluate the effects of glycolaldehyde (GA) on oxidative stress parameters in the heart of Wistar rats. Male Wistar rats received a single injection of GA (10, 50 or 100 mg/Kg) and were sacrificed 6, 12 or 24 h after injection. As indexes of oxidative stress, we quantified protein carbonylation, lipid peroxidation and total reduced thiols. The activities of superoxide dismutase, catalase and glyoxalase I were assayed. Also, the content of N ɛ-(carboxymethyl)lysine (CML) was quantified. Glycolaldehyde induced an imbalance in the redox status, with increased protein carbonylation and lipoperoxidation. Catalase and glyoxalase I had a decrease in their activities. Despite the oxidative stress, we observed no increase in CML content. These results suggest that short-chain aldehydes such as GA might have a significant role in the development of diabetic cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D’Souza, A., Hussain, M., Howarth, F. C., Woods, N. M., Bidasee, K., & Singh, J. (2009). Pathogenesis and pathophysiology of accelerated atherosclerosis in the diabetic heart. Molecular and Cellular Biochemistry, 331, 89–116.

    Article  PubMed  Google Scholar 

  2. Natali, A., Vichi, S., Landi, P., Severi, S., L’Abbate, A., & Ferrannini, E. (2000). Coronary atherosclerosis in Type II diabetes: Angiographic findings and clinical outcome. Diabetologia, 43, 632–641.

    Article  CAS  PubMed  Google Scholar 

  3. (1999). Effect of intensive diabetes treatment on carotid artery wall thickness in the epidemiology of diabetes interventions and complications. Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Diabetes, 48, 383–390.

  4. Vinik, A., & Flemmer, M. (2002). Diabetes and macrovascular disease. Journal of Diabetes Complications, 16, 235–245.

    Article  Google Scholar 

  5. Yamagishi, S., & Imaizumi, T. (2005). Diabetic vascular complications: Pathophysiology, biochemical basis and potential therapeutic strategy. Current Pharmaceutical Design, 11, 2279–2299.

    Article  CAS  PubMed  Google Scholar 

  6. Yamagishi, S. (2009). Advanced glycation end products and receptor-oxidative stress system in diabetic vascular complications. Therapeutic Apheresis and Dialysis, 13, 534–539.

    Article  CAS  PubMed  Google Scholar 

  7. Choei, H., Sasaki, N., Takeuchi, M., Yoshida, T., Ukai, W., Yamagishi, S., et al. (2004). Glyceraldehyde-derived advanced glycation end products in Alzheimer’s disease. Acta Neuropathologica, 108, 189–193.

    Article  CAS  PubMed  Google Scholar 

  8. Peppa, M., Uribarri, J., & Vlassara, H. (2008). Aging and glycoxidant stress. Hormones (Athens), 7, 123–132.

    Google Scholar 

  9. Yagmur, E., Tacke, F., Weiss, C., Lahme, B., Manns, M. P., Kiefer, P., et al. (2006). Elevation of Nepsilon-(carboxymethyl)lysine-modified advanced glycation end products in chronic liver disease is an indicator of liver cirrhosis. Clinical Biochemistry, 39, 39–45.

    Article  CAS  PubMed  Google Scholar 

  10. Semba, R. D., Fink, J. C., Sun, K., Windham, B. G., & Ferrucci, L. (2010). Serum carboxymethyl-lysine, a dominant advanced glycation end product, is associated with chronic kidney disease: The Baltimore longitudinal study of aging. Journal of Renal Nutrition, 20, 74–81.

    Article  PubMed  Google Scholar 

  11. Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21, 3–12.

    Article  CAS  PubMed  Google Scholar 

  12. Humpert, P. M., Lukic, I. K., Thorpe, S. R., Hofer, S., Awad, E. M., Andrassy, M., et al. (2009). AGE-modified albumin containing infusion solutions boosts septicaemia and inflammation in experimental peritonitis. Journal of Leukocyte Biology, 86, 589–597.

    Article  CAS  PubMed  Google Scholar 

  13. Tan, A. L., Sourris, K. C., Harcourt, B. E., Thallas-Bonke, V., Penfold, S., Andrikopoulos, S., et al. (2010). Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology and Renal Physiology, 298, F763–F770.

    Article  CAS  Google Scholar 

  14. Kamata, K., Ozawa, Y., Kobayashi, T., & Matsumoto, T. (2009). Effect of N-epsilon-(carboxymethyl)lysine on coronary vasoconstriction in isolated perfused hearts from control and streptozotocin-induced diabetic rats. Journal of Smooth Muscle Research, 45, 125–137.

    Article  PubMed  Google Scholar 

  15. Shirpoor, A., Salami, S., Khadem-Ansari, M. H., Ilkhanizadeh, B., Pakdel, F. G., & Khademvatani, K. (2009). Cardioprotective effect of vitamin E: Rescues of diabetes-induced cardiac malfunction, oxidative stress, and apoptosis in rat. Journal of Diabetes and Its Complications, 23, 310–316.

    Article  PubMed  Google Scholar 

  16. Lankin, V. Z., Lisina, M. O., Arzamastseva, N. E., Konovalova, G. G., Nedosugova, L. V., Kaminnyi, A. I., et al. (2005). Oxidative stress in atherosclerosis and diabetes. Bulletin of Experimental Biology and Medicine, 140, 41–43.

    Article  CAS  PubMed  Google Scholar 

  17. Gumieniczek, A. (2005). Modification of cardiac oxidative stress in alloxan-induced diabetic rabbits with repaglinide treatment. Life Science, 78, 259–263.

    Article  CAS  Google Scholar 

  18. Glomb, M. A., & Monnier, V. M. (1995). Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Journal of Biological Chemistry, 270, 10017–10026.

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, M. M., Hazen, S. L., Hsu, F. F., & Heinecke, J. W. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.

    Article  CAS  PubMed  Google Scholar 

  20. Al-Enezi, K. S., Alkhalaf, M., & Benov, L. T. (2006). Glycolaldehyde induces growth inhibition and oxidative stress in human breast cancer cells. Free Radical Biology and Medicine, 40, 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  21. Andrades, M. E., Lorenzi, R., Berger, M., Guimaraes, J. A., Moreira, J. C., & Dal-Pizzol, F. (2009). Glycolaldehyde induces fibrinogen post-translational modification, delay in clotting and resistance to enzymatic digestion. Chemico-Biological Interactions, 180, 478–484.

    Article  CAS  PubMed  Google Scholar 

  22. Mera, K., Takeo, K., Izumi, M., Maruyama, T., Nagai, R., & Otagiri, M. (2010). Effect of reactive-aldehydes on the modification and dysfunction of human serum albumin. Journal of Pharmaceutical Sciences, 99, 1614–1625.

    CAS  PubMed  Google Scholar 

  23. Brown, B. E., Dean, R. T., & Davies, M. J. (2005). Glycation of low-density lipoproteins by methylglyoxal and glycolaldehyde gives rise to the in vitro formation of lipid-laden cells. Diabetologia, 48, 361–369.

    Article  CAS  PubMed  Google Scholar 

  24. Morgan, P. E., Dean, R. T., & Davies, M. J. (2002). Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products. Archives of Biochemistry and Biophysics, 403, 259–269.

    Article  CAS  PubMed  Google Scholar 

  25. Ukeda, H., Hasegawa, Y., Ishi, T., & Sawamura, M. (1997). Inactivation of Cu, Zn-superoxide dismutase by intermediates of Maillard reaction and glycolytic pathway and some sugars. Bioscience, Biotechnology, and Biochemistry, 61, 2039–2042.

    Article  CAS  PubMed  Google Scholar 

  26. Lee, H. B., & Blaufox, M. D. (1985). Blood volume in the rat. Journal of Nuclear Medicine, 26, 72–76.

    CAS  PubMed  Google Scholar 

  27. Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.

    Article  CAS  PubMed  Google Scholar 

  28. Draper, H. H., Hadley, M., Lester, P., & Alexander, N. G. (1990). [43] Malondialdehyde determination as index of lipid peroxidation. In Methods in enzymology (pp 421–431), Academic Press.

  29. Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70–77.

    Article  CAS  PubMed  Google Scholar 

  30. Aebi, H., & Lester, P. (1984). [13] Catalase in vitro. In Methods in enzymology (pp 121–126), Academic Press.

  31. Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. The Journal of Biological Chemistry, 247, 3170–3175.

    CAS  PubMed  Google Scholar 

  32. Mannervik, B., Aronsson, A. C., Marmstal, E., & Tibbelin, G. (1981). Glyoxalase I (rat liver). Methods in Enzymology, 77, 297–301.

    Article  CAS  PubMed  Google Scholar 

  33. Imanaga, Y., Sakata, N., Takebayashi, S., Matsunaga, A., Sasaki, J., Arakawa, K., et al. (2000). In vivo and in vitro evidence for the glycoxidation of low density lipoprotein in human atherosclerotic plaques. Atherosclerosis, 150, 343–355.

    Article  CAS  PubMed  Google Scholar 

  34. Mocatta, T. J., Pilbrow, A. P., Cameron, V. A., Senthilmohan, R., Frampton, C. M., Richards, A. M., et al. (2007). Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. Journal of the American College of Cardiology, 49, 1993–2000.

    Article  CAS  PubMed  Google Scholar 

  35. Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2010). The RAGE axis: A fundamental mechanism signaling danger to the vulnerable vasculature. Circulation Research, 106, 842–853.

    Article  CAS  PubMed  Google Scholar 

  36. Park, L., Raman, K. G., Lee, K. J., Lu, Y., Ferran, L. J., Jr., Chow, W. S., et al. (1998). Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nature Medicine, 4, 1025–1031.

    Article  CAS  PubMed  Google Scholar 

  37. Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.

    CAS  PubMed  Google Scholar 

  38. Adrover, M., Vilanova, B., Munoz, F., & Donoso, J. (2008). Kinetic study of the reaction of glycolaldehyde with two glycation target models. Annals of the New York Academy of Sciences, 1126, 235–240.

    Article  CAS  PubMed  Google Scholar 

  39. Ballatori, N., Krance, S. M., Notenboom, S., Shi, S., Tieu, K., & Hammond, C. L. (2009). Glutathione dysregulation and the etiology and progression of human diseases. Biological Chemistry, 390, 191–214.

    Article  CAS  PubMed  Google Scholar 

  40. Paulsen, C. E., & Carroll, K. S. (2010). Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chemical Biology, 5, 47–62.

    Article  CAS  PubMed  Google Scholar 

  41. Vander Jagt, D. L., Hassebrook, R. K., Hunsaker, L. A., Brown, W. M., & Royer, R. E. (2001). Metabolism of the 2-oxoaldehyde methylglyoxal by aldose reductase and by glyoxalase-I: Roles for glutathione in both enzymes and implications for diabetic complications. Chemico-Biological Interactions, 130–132, 549–562.

    Article  PubMed  Google Scholar 

  42. Atalay, M., Oksala, N. K., Laaksonen, D. E., Khanna, S., Nakao, C., Lappalainen, J., et al. (2004). Exercise training modulates heat shock protein response in diabetic rats. Journal of Applied Physiology, 97, 605–611.

    Article  CAS  PubMed  Google Scholar 

  43. Aydemir-Koksoy, A., Bilginoglu, A., Sariahmetoglu, M., Schulz, R., & Turan, B. (2009). Antioxidant treatment protects diabetic rats from cardiac dysfunction by preserving contractile protein targets of oxidative stress. Journal of Nutritional Biochemistry.

  44. Bilginoglu, A., Seymen, A., Tuncay, E., Zeydanli, E., Aydemir-Koksoy, A., & Turan, B. (2009). Antioxidants but not doxycycline treatments restore depressed beta-adrenergic responses of the heart in diabetic rats. Cardiovascular Toxicology, 9, 21–29.

    Article  CAS  PubMed  Google Scholar 

  45. Nagai, R., Fujiwara, Y., Mera, K., Motomura, K., Iwao, Y., Tsurushima, K., et al. (2008). Usefulness of antibodies for evaluating the biological significance of AGEs. Annals of the New York Academy of Sciences, 1126, 38–41.

    Article  CAS  PubMed  Google Scholar 

  46. Nagai, R., Hayashi, C. M., Xia, L., Takeya, M., & Horiuchi, S. (2002). Identification in human atherosclerotic lesions of GA-pyridine, a novel structure derived from glycolaldehyde-modified proteins. Journal of Biological Chemistry, 277, 48905–48912.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Rede Instituto Brasileiro de Neurociência (IBN-Net) # 01.06.0842-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Lorenzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenzi, R., Andrades, M.E., Bortolin, R.C. et al. Glycolaldehyde Induces Oxidative Stress in the Heart: A Clue to Diabetic Cardiomyopathy?. Cardiovasc Toxicol 10, 244–249 (2010). https://doi.org/10.1007/s12012-010-9083-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-010-9083-x

Keywords

Navigation