Skip to main content

Advertisement

Log in

Might Diet, APOE-APOA1 Axis, and Iron Metabolism Provide Clues About the Discrepancy in Alzheimer’s Disease Occurrence Between Humans and Chimpanzees? A Bioinformatics-Based Re-Analysis of Gene Expression Data on Mice Fed with Human and Chimpanzee Diets

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The emergence of conflicting reports on the natural occurrence of Alzheimer’s disease (AD) in non-human primates has prompted research on the comparison of the role of diet-associated changes in gene expression between humans and non-human primates. This article analyzes the effects of different human and chimpanzee diets and their link with apolipoproteins, lipid, and iron (Fe) metabolism, starting from available data, to find out any gap in the existing knowledge. By using a system biology approach, we have re-analyzed the liver and brain RNA seq data of mice fed with either human or chimpanzee diet for 2 weeks to look for genetic differences that may explain the differences in AD occurrence between those two classes. In liver samples of mice fed with the chimpanzee diet in comparison to the human diet, apolipoprotein A-1, ceruloplasmin, and 10 other genes were upregulated while 21 genes were downregulated. However, brain apolipoprotein E4 gene expression was not changed upon diet. Genetic, structural, and functional differences in apolipoprotein E protein, along with differences in Fe metabolisms and a longer lifespan of humans during evolution may account for the observed disparity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dorszewska J et al (2016) Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res 13(9):952–963

    Article  CAS  PubMed  Google Scholar 

  2. Edler MK et al (2017) Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease. Neurobiol Aging 59:107–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gearing M et al (1997) beta-amyloid (A beta) deposition in the brains of aged orangutans. Neurobiol Aging 18(2):139–146

    Article  CAS  PubMed  Google Scholar 

  4. Freire-Cobo C et al (2021) Comparative neuropathology in aging primates: a perspective. Am J Primatol 83(11):e23299

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ayton S et al (2018) Evidence that iron accelerates Alzheimer’s pathology: a CSF biomarker study. J Neurol Neurosurg Psychiatry 89(5):456–460

    Article  PubMed  Google Scholar 

  6. Ayton S et al (2015) Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat Commun 6:6760

    Article  CAS  PubMed  Google Scholar 

  7. Diouf I et al (2020) Cerebrospinal fluid ceruloplasmin levels predict cognitive decline and brain atrophy in people with underlying beta-amyloid pathology. Neurobiol Dis 139:104810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wood H (2015) Alzheimer disease: iron--the missing link between ApoE and Alzheimer disease? Nat Rev Neurol 11(7):369

    Article  CAS  PubMed  Google Scholar 

  9. Kwon OD (2016) Apolipoprotein E4: a risk factor for successful cognitive aging. Dement Neurocogn Disord 15(3):61–67

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lennol MP et al (2022) Apolipoprotein E imbalance in the cerebrospinal fluid of Alzheimer’s disease patients. Alzheimers Res Ther 14(1):161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Troutwine BR et al (2022) Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B 12(2):496–510

    Article  CAS  PubMed  Google Scholar 

  12. Finch CE, Stanford CB (2004) Meat-adaptive genes and the evolution of slower aging in humans. Q Rev Biol 79(1):3–50

    Article  CAS  PubMed  Google Scholar 

  13. McIntosh AM et al (2012) The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes). PLoS One 7(10):e47760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Benevides LJ et al (2016) Evolutionary analysis of apolipoprotein E by maximum likelihood and complex network methods. Genet Mol Biol 39(4):665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terio K et al (2011) Pathologic lesions in chimpanzees (Pan trogylodytes schweinfurthii) from Gombe National Park, Tanzania, 2004 -2010. J Zoo Wildl Med 42:1597–1607

    Article  Google Scholar 

  16. Licher S et al (2019) Genetic predisposition, modifiable-risk-factor profile and long-term dementia risk in the general population. Nat Med 25(9):1364–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ngandu T et al (2015) A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet 385(9984):2255–2263

    Article  PubMed  Google Scholar 

  18. Walker LC, Jucker M (2017) The exceptional vulnerability of humans to Alzheimer’s disease. Trends Mol Med 23(6):534–545

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ebersberger I et al (2002) Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet 70(6):1490–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Somel M et al (2008) Human and chimpanzee gene expression differences replicated in mice fed different diets. PLoS One 3(1):e1504

    Article  PubMed  PubMed Central  Google Scholar 

  21. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gautier L et al (2004) Affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3):307–315

    Article  CAS  PubMed  Google Scholar 

  23. Ritchie ME et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple hypothesis testing. J R Stat Soc 57:289–300

    Google Scholar 

  25. Szklarczyk D et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612

    Article  CAS  PubMed  Google Scholar 

  26. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Namba Y et al (1991) Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541(1):163–166

    Article  CAS  PubMed  Google Scholar 

  28. Liu JQ et al (2019) Gain and loss events in the evolution of the apolipoprotein family in vertebrata. BMC Evol Biol 19(1):209

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fernandez-Calle R et al (2022) APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer’s disease pathology and brain diseases. Mol Neurodegener 17(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang F et al (2015) Apolipoprotein A-IV: a protein intimately involved in metabolism. J Lipid Res 56(8):1403–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vollbach H et al (2005) APOA1 polymorphism influences risk for early-onset nonfamiliar AD. Ann Neurol 58(3):436–441

    Article  CAS  PubMed  Google Scholar 

  32. Tong JH et al (2022) Association of circulating apolipoprotein AI levels in patients with Alzheimer’s disease: a systematic review and meta-analysis. Front Aging Neurosci 14:899175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Koldamova RP et al (2001) Apolipoprotein A-I directly interacts with amyloid precursor protein and inhibits A beta aggregation and toxicity. Biochemistry 40(12):3553–3560

    Article  CAS  PubMed  Google Scholar 

  34. Paula-Lima AC et al (2009) Human apolipoprotein A-I binds amyloid-beta and prevents Abeta-induced neurotoxicity. Int J Biochem Cell Biol 41(6):1361–1370

    Article  CAS  PubMed  Google Scholar 

  35. Qu J et al (2019) Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8(4):319

  36. Lin Q, Cao Y, Gao J (2015) Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer’s disease. Drug Des Devel Ther 9:5421–5431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Albers JJ et al (1995) Functional expression of human and mouse plasma phospholipid transfer protein: effect of recombinant and plasma PLTP on HDL subspecies. Biochim Biophys Acta 1258(1):27–34

    Article  PubMed  Google Scholar 

  38. Vuletic S et al (2005) Reduced CSF PLTP activity in Alzheimer’s disease and other neurologic diseases; PLTP induces ApoE secretion in primary human astrocytes in vitro. J Neurosci Res 80(3):406–413

    Article  CAS  PubMed  Google Scholar 

  39. Wang H et al (2021) Roles and mechanisms of phospholipid transfer protein in the development of Alzheimer’s disease. Psychogeriatrics 21(4):659–667

    Article  PubMed  Google Scholar 

  40. Carmona S, Hardy J, Guerreiro R (2018) The genetic landscape of Alzheimer disease. Handb Clin Neurol 148:395–408

    Article  PubMed  Google Scholar 

  41. Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33(10):2357–2372

    Article  PubMed  Google Scholar 

  42. Rosen RF et al (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509(3):259–270

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dlouhy AC et al (2019) Fluorescence resonance energy transfer links membrane ferroportin, hephaestin but not ferroportin, amyloid precursor protein complex with iron efflux. J Biol Chem 294(11):4202–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lei P et al (2012) Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med 18(2):291–295

    Article  CAS  PubMed  Google Scholar 

  45. Bodovitz S et al (1995) Iron levels modulate alpha-secretase cleavage of amyloid precursor protein. J Neurochem 64(1):307–315

    Article  CAS  PubMed  Google Scholar 

  46. Rogers JT et al (2002) An iron-responsive element type II in the 5’-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J Biol Chem 277(47):45518–45528

    Article  CAS  PubMed  Google Scholar 

  47. Siotto M et al (2016) Association between serum ceruloplasmin specific activity and risk of Alzheimer’s disease. J Alzheimers Dis 50(4):1181–1189

    Article  CAS  PubMed  Google Scholar 

  48. Pal A et al (2022) Iron in Alzheimer’s disease: from physiology to disease disabilities. Biomolecules 12(9):1248

  49. De Luca A et al (2020) Iron serum markers profile in frontotemporal lobar degeneration. J Alzheimers Dis 78(4):1373–1380

    Article  PubMed  Google Scholar 

  50. Perez SE et al (2016) Early Alzheimer’s disease-type pathology in the frontal cortex of wild mountain gorillas (Gorilla beringei beringei). Neurobiol Aging 39:195–201

    Article  PubMed  Google Scholar 

  51. Castellano JM et al (2011) Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Sci Transl Med 3(89):89ra57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huynh TV et al (2017) Apolipoprotein E and Alzheimer’s disease: the influence of apolipoprotein E on amyloid-beta and other amyloidogenic proteins. J Lipid Res 58(5):824–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keren-Shaul H et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169(7):1276–1290 e17

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Y et al (2018) TREM2 is a receptor for beta-amyloid that mediates microglial function. Neuron 97(5):1023–1031 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cruchaga C et al (2011) Association and expression analyses with single-nucleotide polymorphisms in TOMM40 in Alzheimer disease. Arch Neurol 68(8):1013–1019

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rasmussen KL et al (2016) Data on plasma levels of apolipoprotein E, correlations with lipids and lipoproteins stratified by APOE genotype, and risk of ischemic heart disease. Data Brief 6:923–932

    Article  PubMed  PubMed Central  Google Scholar 

  57. Qian J et al (2017) APOE-related risk of mild cognitive impairment and dementia for prevention trials: An analysis of four cohorts. PLoS Med 14(3):e1002254

    Article  PubMed  PubMed Central  Google Scholar 

  58. Belloy ME, Napolioni V, Greicius MD (2019) A quarter century of APOE and Alzheimer’s disease: progress to date and the path forward. Neuron 101(5):820–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Carl Salustri for critical English editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of this review.

Corresponding author

Correspondence to Amit Pal.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ashok Kumar, Amit Pal, and Rosanna Squitti are co-first authors.

Supplementary Information

ESM 1

File 1. Top differentially expressed genes analyzed by limma in R; File 2. DEGs of Mouse Brain Chimpanzee Diet (experiment) vs Mouse Brain pellet Diet (control); File 3. DEGs of Mouse Brain Human Diet (experiment) vs Mouse Brain pellet Diet (control); File 4. DEGs of Mouse Liver Chimpanzee Diet (experiment) vs Mouse Liver Human Diet (control); File 5. DEGs of Mouse Liver Chimpanzee Diet (experiment) vs Mouse Liver pellet Diet (control); File 6. DEGs of Mouse Liver Human Diet (experiment) vs Mouse Liver pellet Diet (control); File 7. Representative image of protein-protein interaction network between the DEGs in the Mouse Liver Chimpanzee Diet (condition under study) vs. Mouse Liver Human Diet (control); File 8. Representative image for protein-protein interaction network between the DEGs in the Mouse Liver and Brain [Human Diet (condition under study) vs pellet Diet (control)]; File 9. Representative image for protein-protein interaction network between the DEGs in the Mouse Liver and Brain [Chimpanzee Diet (condition under study) vs pellet Diet (control)] (ZIP 2167 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Pal, A., Singh, P. et al. Might Diet, APOE-APOA1 Axis, and Iron Metabolism Provide Clues About the Discrepancy in Alzheimer’s Disease Occurrence Between Humans and Chimpanzees? A Bioinformatics-Based Re-Analysis of Gene Expression Data on Mice Fed with Human and Chimpanzee Diets. Biol Trace Elem Res (2023). https://doi.org/10.1007/s12011-023-03932-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12011-023-03932-5

Keywords

Navigation